首页> 外文期刊>Journal of Guidance, Control, and Dynamics >Self-Organizing Radial Basis Function Networks for Adaptive Flight Control
【24h】

Self-Organizing Radial Basis Function Networks for Adaptive Flight Control

机译:自适应飞行控制的自组织径向基函数网络

获取原文
获取原文并翻译 | 示例

摘要

The performance of nonlinear flight-control algorithms, such as feedback linearization and dynamic inversion, isnheavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of thenaircraft dynamics results in reduced performance and may lead to instability. A self-organizing parametrizationnstructure is developed to augment the baseline dynamic inversion controller for a high-performance militarynaircraft. This algorithmis proven to be stable and can guarantee arbitrary tracking error performance. The trainingnalgorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growingnthe network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible.nThe controller is simulated for different situations, including control surface failures, modeling errors, and externalndisturbances. A performance measure of maximum tracking error is specified for the controllers a priori. Excellentntracking errorminimization to a prespecified level using the adaptive component is achieved.The performance of thenself-organizing radial-basis-function network-based controller is also compared with a fixed radial-basis-functionnnetwork-based adaptive controller.While the fixed radial-basis-function network-based controller,which is tuned toncompensate for control surface failures, fails to achieve the same performance under modeling uncertainty andndisturbances, the self-organizing radial-basis-function network is able to achieve good tracking convergence undernall specified error conditions.
机译:非线性飞行控制算法的性能,例如反馈线性化和动态反演,在很大程度上不依赖于动态模型的逼真度。对飞机动力学的不完全或不正确的了解会导致性能下降,并可能导致不稳定。开发了一种自组织参数化结构,以增强高性能军用飞机的基线动态反演控制器。该算法被证明是稳定的,可以保证任意跟踪误差性能。 Lyapunov理论推导了用于扩展网络和调整参数的训练算法。除了增加基本功能网络外,还采用了修剪策略以使网络规模尽可能小。n针对不同情况(包括控制面故障,建模错误和外部阻力)对控制器进行了仿真。先验地为控制器指定了最大跟踪误差的性能度量。利用固定组件将自组织径向基函数网络控制器的性能与基于固定径向基函数网络的自适应控制器的性能进行了比较。基于功能的基于网络的控制器已针对控制面故障进行了调整,无法在建模不确定性和阻力下达到相同的性能,而自组织的径向基函数网络则能够在所有指定的误差条件下实现良好的跟踪收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号