首页> 外文期刊>Journal of Global Optimization >Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions
【24h】

Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions

机译:多目标无限制组合优化:极端支持解决方案数量的多项式界限

获取原文
获取原文并翻译 | 示例

摘要

The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the epsilon-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems.
机译:多目标不受约束的组合优化问题(MUCO)可以被视为离散线性多目标优化问题的原型。它可以被解释为具有线性和目标函数的任何多目标组合优化问题的特定放松。虽然其单一标准是分析可解的,但粘液率分享大多数多目标组合优化问题的计算复杂性问题:epsilon-约束标定的难易性和NP硬度。在本文中,呈现了粘液问题的支持点,超平面的布置和重量空间分解的相互关系和Zonotopes。基于这些相互关系和Zaslavsky在超平面排列中的面部的Zaslavsky的结果,可以导出在极限支持的解决方案的数量上的多项式绑定,导致精确的多项式时间算法来查找所有极端支持的解决方案。示出了如何将该算法结合到用于多目标背包问题的解决方案方法中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号