首页> 外文期刊>Journal of Global Optimization >Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions
【24h】

Multi-objective unconstrained combinatorial optimization: a polynomial bound on the number of extreme supported solutions

机译:多目标无约束组合优化:极限支持解数的多项式界

获取原文
获取原文并翻译 | 示例

摘要

The multi-objective unconstrained combinatorial optimization problem (MUCO) can be considered as an archetype of a discrete linear multi-objective optimization problem. It can be interpreted as a specific relaxation of any multi-objective combinatorial optimization problem with linear sum objective function. While its single criteria analogon is analytically solvable, MUCO shares the computational complexity issues of most multi-objective combinatorial optimization problems: intractability and NP-hardness of the epsilon-constraint scalarizations. In this article interrelations between the supported points of a MUCO problem, arrangements of hyperplanes and a weight space decomposition, and zonotopes are presented. Based on these interrelations and a result by Zaslavsky on the number of faces in an arrangement of hyperplanes, a polynomial bound on the number of extreme supported solutions can be derived, leading to an exact polynomial time algorithm to find all extreme supported solutions. It is shown how this algorithm can be incorporated into a solution approach for multi-objective knapsack problems.
机译:多目标无约束组合优化问题(MUCO)可以看作是离散线性多目标优化问题的原型。可以将其解释为具有线性和目标函数的任何多目标组合优化问题的特定松弛。尽管MUCO的单个标准类比可以解析,但是MUCO共享了大多数多目标组合优化问题的计算复杂性问题:ε约束标量的难处理性和NP硬度。在本文中,提出了MUCO问题的支持点,超平面的排列和权空间分解以及区域同位素之间的相互关系。基于这些相互关系以及Zaslavsky对超平面排列中的面数的计算结果,可以得出在极端支持解的数量上的多项式边界,从而得出精确的多项式时间算法来查找所有极端支持解。展示了如何将该算法合并到多目标背包问题的解决方案中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号