首页> 外文期刊>Journal of Functional Programming >Algebraic Fusion Of Functions With An Accumulating Parameter And Its Improvement
【24h】

Algebraic Fusion Of Functions With An Accumulating Parameter And Its Improvement

机译:具有累加参数的函数的代数融合及其改进

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a new framework for fusion that is designed for eliminating the intermediate data structures involved in the composition of functions that have one accumulating parameter. The new fusion framework comprises two steps: algebraic fusion and its subsequent improvement process. The key idea in our development is to regard functions with an accumulating parameter as functions that operate over the monoid of data contexts. Algebraic fusion composes each such function with a monoid homomorphism that is derived from the definition of the consumer function to obtain a higher-order function that computes over the monoid of endofunctions. The transformation result may be further refined by an improvement process, which replaces the operation over the monoid of endofunctions (i.e., function closures) with another monoid operation over a monoid structure other than function closures. Using our framework, one can formulate a particular solution to the fusion problem by devising appropriate monoids and monoid homomorphisms. This provides a unified exposition of a variety of fusion methods that have been developed so far in different formalisms. Furthermore, the cleaner formulation makes it possible to argue about some delicate issues on a firm mathematical basis. We demonstrate that algebraic fusion and improvement in the world of complete pointed partial orders (CPOs) and continuous functions can correctly fuse functions that operate on partial and infinite data structures. We also show that subtle differences in termination behaviours of transformed programmes caused by certain different fusion methods can be cleanly explained by corresponding improvement processes that have different underlying monoid structures.
机译:本文开发了一种新的融合框架,该框架旨在消除具有一个累加参数的函数组成中涉及的中间数据结构。新的融合框架包括两个步骤:代数融合及其后续改进过程。我们开发中的关键思想是将具有累加参数的函数视为对数据上下文的单态操作的函数。代数融合将每个这样的函数与从消费者函数的定义派生出来的类同态同构性组合在一起,从而获得计算内函数的类群的高阶函数。可以通过改进过程进一步细化变换结果,该改进过程用除函数闭包之外的对单面体结构的另一单子组操作来代替对内函数的单半体的操作(即,函数闭包)。使用我们的框架,可以通过设计适当的monoid和monoid同态来为融合问题制定一种特殊的解决方案。这提供了迄今为止在不同形式主义中开发的各种融合方法的统一说明。此外,更清洁的公式化使得可以在牢固的数学基础上争论一些微妙的问题。我们证明,在完全有针对性的部分阶(CPO)和连续函数的世界中,代数融合和改进可以正确地融合在部分和无限数据结构上运行的函数。我们还表明,由某些不同的融合方法导致的转换程序的终止行为的细微差别可以通过具有不同底层类半体结构的相应改进过程来清楚地解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号