首页> 外文期刊>Journal of Field Robotics >Vision-Aided Inertial Navigation for Pin-Point Landing using Observations of Mapped Landmarks
【24h】

Vision-Aided Inertial Navigation for Pin-Point Landing using Observations of Mapped Landmarks

机译:视觉辅助的惯性导航,用于使用映射地标观测的精确点着陆

获取原文
获取原文并翻译 | 示例

摘要

In this paper we describe an extended Kalman filter algorithm for estimating the pose and velocity of a spacecraft during entry, descent, and landing. The proposed estimator combines measurements of rotational velocity and acceleration from an inertial measurement unit (IMU) with observations of a priori mapped landmarks, such as craters or other visual features, that exist on the surface of a planet. The tight coupling of inertial sensory information with visual cues results in accurate, robust state estimates available at a high bandwidth. The dimensions of the landing uncertainty ellipses achieved by the proposed algorithm are three orders of magnitude smaller than those possible when relying exclusively on IMU integration. Extensive experimental and simulation results are presented, which demonstrate the applicability of the algorithm on real-world data and analyze the dependence of its accuracy on several system design parameters.
机译:在本文中,我们描述了一种扩展的卡尔曼滤波算法,用于估算航天器在进入,下降和着陆期间的姿态和速度。所提出的估计器将来自惯性测量单元(IMU)的旋转速度和加速度的测量结果与行星表面上存在的先验映射地标(例如陨石坑或其他视觉特征)的观察结果相结合。惯性感官信息与视觉提示的紧密结合导致在高带宽下可获得准确,可靠的状态估计。与仅依赖IMU集成时相比,所提出的算法实现的着陆不确定性椭圆的尺寸要小三个数量级。给出了广泛的实验和仿真结果,这些结果证明了该算法在现实世界数据上的适用性,并分析了其准确性对多个系统设计参数的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号