首页> 外文期刊>Journal of robotic systems >Anytime Online Novelty and Change Detection for Mobile Robots
【24h】

Anytime Online Novelty and Change Detection for Mobile Robots

机译:随时在线为移动机器人提供新颖性和变更检测

获取原文
获取原文并翻译 | 示例

摘要

In many mobile robot applications, the high cost of damaging the robot or its environment makes even rare failures unacceptable. To mitigate this risk, a robot must be able to detect potentially hazardous situations before it experiences a major failure. This problem therefore becomes one of novelty and change detection: how a robot can identify when perception inputs differ from prior inputs seen during training or previous operation in the same area. With this ability, the system can either avoid novel locations to minimize risk or stop and enlist human help via supervisory control or teleoperation. We present an anytime novelty detection algorithm that deals with noisy and redundant high-dimensional feature spaces that are common in robotics by utilizing prior class information within the training set. This approach is also well suited for online use when a constantly adjusting environmental model is beneficial. Furthermore, we address the problem of change detection in an environment of repeated operation by framing it as a location-specific version of novelty detection and present an online scene segmentation algorithm that improves accuracy across diverse environments. We validate these approaches through extensive experiments onboard two outdoor mobile robot platforms, show that our approaches are robust to noisy sensor data and moderate registration errors, and argue how such abilities could be key in increasing the real-world applications and impact of mobile robotics.
机译:在许多移动机器人应用中,损坏机器人或其环境的高昂成本使得即使是罕见的故障也无法接受。为了减轻这种风险,机器人必须能够在发生重大故障之前检测出潜在的危险情况。因此,这个问题变成了新颖性和变化检测之一:机器人如何识别何时感知输入不同于在同一区域的训练或先前操作中看到的先前输入。借助此功能,系统可以避开新的位置以最大程度地降低风险,也可以停止并通过监督控制或远程操作寻求人工帮助。我们提出了一种随时可用的新颖性检测算法,该算法通过利用训练集中的先前课程信息来处理机器人技术中常见的嘈杂和多余的高维特征空间。当不断调整的环境模型有益时,此方法也非常适合在线使用。此外,我们通过将其构造为新颖性检测的特定于位置的版本来解决重复操作环境中的变化检测问题,并提出了一种在线场景分割算法,可提高跨各种环境的准确性。我们通过在两个室外移动机器人平台上进行的广泛实验验证了这些方法,表明我们的方法对于嘈杂的传感器数据和适度的配准错误具有鲁棒性,并争论了这种能力如何成为增加现实世界应用和移动机器人技术影响的关键。

著录项

  • 来源
    《Journal of robotic systems》 |2011年第4期|p.589-618|共30页
  • 作者单位

    Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

    Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

    Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

    Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号