首页> 外文期刊>Journal of Field Robotics >Terrain Classification In Complex Three-dimensional Outdoor Environments
【24h】

Terrain Classification In Complex Three-dimensional Outdoor Environments

机译:复杂三维室外环境中的地形分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two techniques to detect and classify navigable terrain in complex three-dimensional (3D) environments. The first method is a low level on-line mechanism aimed at detecting obstacles and holes at a fast frame rate using a time-of-flight camera as the main sensor. The second technique is a high-level offline classification mechanism that learns traversable regions from larger 3D point clouds acquired with a laser range scanner. We approach the problem using Gaussian processes as a regression tool, in which the terrain parameters are learned, and also for classification, using samples from traversed areas to build the traversable terrain class. The two methods are compared against unsupervised classification, and sample trajectories are generated in the classified areas using a nonholonomic path planner. We show results of both the low-level and the high-level terrain classification approaches in simulations and in real-time navigation experiments using a Segway RMP400 robot.
机译:本文提出了两种在复杂的三维(3D)环境中检测和分类可导航地形的技术。第一种方法是一种低级在线机制,旨在使用飞行时间相机作为主要传感器以快速帧速率检测障碍物和漏洞。第二种技术是高级离线分类机制,该机制从激光测距仪获取的较大3D点云中学习可遍历区域。我们使用高斯过程作为回归工具来解决该问题,在该工具中,可以使用遍历区域的样本来构建可遍历的地形类别,从而学习地形参数并进行分类。将这两种方法与无监督分类进行了比较,并使用非完整路径规划器在分类区域中生成了样本轨迹。我们使用Segway RMP400机器人在模拟和实时导航实验中显示了低级和高级地形分类方法的结果。

著录项

  • 来源
    《Journal of Field Robotics》 |2015年第1期|42-60|共19页
  • 作者单位

    Institut de Robotica i Informatica Industrial, CSIC-UPC, Llorens Artigas 4-6, Barcelona 08028, Spain;

    Institut de Robotica i Informatica Industrial, CSIC-UPC, Llorens Artigas 4-6, Barcelona 08028, Spain;

    Institut de Robotica i Informatica Industrial, CSIC-UPC, Llorens Artigas 4-6, Barcelona 08028, Spain;

    Institut de Robotica i Informatica Industrial, CSIC-UPC, Llorens Artigas 4-6, Barcelona 08028, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号