首页> 外文期刊>Journal of Discrete Algorithms >Exact algorithms and applications for Tree-like Weighted Set Cover
【24h】

Exact algorithms and applications for Tree-like Weighted Set Cover

机译:树状加权集覆盖的精确算法和应用

获取原文
获取原文并翻译 | 示例

摘要

We introduce an NP-complete special case of the Weighted Set Cover problem and show its fixed-parameter tractability with respect to the maximum subset size, a parameter that appears to be small in relevant applications. More precisely, in this practically relevant variant we require that the given collection C of subsets of a base set S should be "tree-like". That is, the subsets in C can be organized in a tree T such that every subset one-to-one corresponds to a tree node and, for each element s of S, the nodes corresponding to the subsets containing s induce a subtree of T. This is equivalent to the problem of finding a minimum edge cover in an edge-weighted acyclic hypergraph. Our main result is an algorithm running in O(3~k • mn) time where k denotes the maximum subset size, n := |S|, and m := |C|. The algorithm also implies a fixed-parameter tractability result for the NP-complete Multicut in Trees problem, complementing previous approximation results. Our results find applications in computational biology in phylogenomics and for saving memory in tree decomposition based graph algorithms.
机译:我们介绍了加权集覆盖问题的NP完全特例,并显示了关于最大子集大小的固定参数易处理性,该参数在相关应用中似乎很小。更确切地说,在这种实际相关的变体中,我们要求基本集S的子集的给定集合C应该是“树状的”。也就是说,可以将C中的子集组织在树T中,使得每个子集一一对应于一个树节点,并且对于S的每个元素s,与包含s的子集相对应的节点都诱导出T的子树。这等同于在边缘加权的非循环超图中找到最小边缘覆盖的问题。我们的主要结果是在O(3〜k•mn)时间中运行的算法,其中k表示最大子集大小,n:= | S |和m:= | C |。该算法还暗示了NP完全树中多割问题的固定参数易处理性结果,是对先前近似结果的补充。我们的结果发现了系统进化组学在计算生物学中的应用,以及在基于树分解的图算法中节省内存的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号