首页> 外文期刊>Journal on Data Semantics >AI-Empowered Process Mining for Complex Application Scenarios: Survey and Discussion
【24h】

AI-Empowered Process Mining for Complex Application Scenarios: Survey and Discussion

机译:复杂应用方案的AI-Empowered Process挖掘:调查与讨论

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing attention of process mining (PM) research to the logs of low structured processes and of non-process-aware systems (e.g., ERP, IoT systems) poses a number of challenges. Indeed, in such cases, the risk of obtaining low-quality results is rather high, and great effort is needed to carry out a PM project, most of which is usually spent in trying different ways to select and prepare the input data for PM tasks. Two general AI-based strategies are discussed in this paper, which can improve and ease the execution of PM tasks in such settings: (a) using explicit domain knowledge and (b) exploiting auxiliary AI tasks. After introducing some specific data quality issues that complicate the application of PM techniques in the above-mentioned settings, the paper illustrates these two strategies and the results of a systematic review of relevant literature on the topic. Finally, the paper presents a taxonomical scheme of the works reviewed and discusses some major trends, open issues and opportunities in this field of research.
机译:进程挖掘(PM)对低结构化过程和非过程感知系统的日志(例如,ERP,IOT系统)的越来越关注进程挖掘(PM)研究造成了许多挑战。实际上,在这种情况下,获得低质量结果的风险是相当高的,并且需要努力进行PM项目,其中大部分通常用于尝试不同的方式来选择和准备PM任务的输入数据。本文讨论了两种基于AI的策略,可以在这种情况下改进和缓解PM任务的执行:(a)使用显式域知识和(b)利用辅助ai任务。在引入一些特定的数据质量问题后,在上述设置中复杂化PM技术的应用,该文件说明了这两种策略和对该主题相关文献的系统审查结果。最后,本文提出了审查的作品的分类学计划,并讨论了这一研究领域的一些主要趋势,开放问题和机遇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号