首页> 外文期刊>Journal of Crystal Growth >Effect of growth temperature on the impurity incorporation and material properties of N-polar GaN films grown by metal-organic chemical vapor deposition
【24h】

Effect of growth temperature on the impurity incorporation and material properties of N-polar GaN films grown by metal-organic chemical vapor deposition

机译:生长温度对金属有机化学气相沉积法生长N极GaN薄膜杂质掺入和材料性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated the influence of growth temperature on N-polar GaN epitaxial layers deposited on sapphire substrates by metal-organic chemical vapor deposition (MOCVD). The GaN films were grown at various temperatures (1050 ℃, 1000 ℃, 950 ℃, 900 ℃). The sheet resistivity of the GaN film was 2153 ohm/□ at 950 ℃, which is 6 times higher than that at 1050 ℃ (361 ohm/□). Secondary ion mass spectroscopy (SIMS) measurement confirmed that the increase of carbon impurity concentration was responsible for the above phenomena. High-resolution X-ray diffraction (HRXRD), photoluminescence (PL) and Raman measurements showed that the GaN film quality did not deteriorate seriously at low growth temperature, implying that reducing the growth temperature would be a feasible method to obtain highly insulating N-polar GaN films. However, further reducing the growth temperature to 900 ℃ led to the sharp increase of oxygen impurity concentration and the decrease of sheet resistivity. This mechanism is explained in detail.
机译:我们已经研究了生长温度对通过金属有机化学气相沉积(MOCVD)沉积在蓝宝石衬底上的N极性GaN外延层的影响。 GaN膜在各种温度(1050℃,1000℃,950℃,900℃)下生长。 GaN膜在950℃的薄层电阻率为2153 ohm /□,是1050℃(361 ohm /□)的薄层电阻的6倍。二次离子质谱(SIMS)测量证实,碳杂质浓度的升高是造成上述现象的原因。高分辨率X射线衍射(HRXRD),光致发光(PL)和拉曼测量表明,在低生长温度下GaN膜质量不会严重劣化,这表明降低生长温度将是获得高度绝缘N-的可行方法。极性GaN膜。然而,将生长温度进一步降低到900℃会导致氧杂质浓度的急剧增加和薄层电阻率的降低。详细说明了该机制。

著录项

  • 来源
    《Journal of Crystal Growth》 |2013年第1期|96-99|共4页
  • 作者单位

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A1. Impurities; A3. Metalorganic chemical vapor deposition; B1. Nitrides; B2. Semiconducting Ⅲ-Ⅴ materials;

    机译:A1。杂质;A3。金属有机化学气相沉积;B1。氮化物;B2。半导体Ⅲ-Ⅴ材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号