首页> 外文期刊>Journal of Computing and Information Science in Engineering >Variational Discrete Developable Surface Interpolation
【24h】

Variational Discrete Developable Surface Interpolation

机译:变分离散可展开曲面插值

获取原文
获取原文并翻译 | 示例

摘要

Modeling using developable surfaces plays an important role in computer graphics and computer aided design. In this paper, we investigate a new problem called variational developable surface interpolation (VDSI). For a polyline boundary P, different from previous work on interpolation or approximation of discrete developable surfaces from P, the VDSI interpolates a subset of the vertices of P and approximates the rest. Exactly speaking, the VDSI allows to modify a subset of vertices within a prescribed bound such that a better discrete developable surface interpolates the modified polyline boundary. Therefore, VDSI could be viewed as a hybrid of interpolation and approximation. Generally, obtaining discrete developable surfaces for given polyline boundaries are always a time-consuming task. In this paper, we introduce a dynamic programming method to quickly construct a developable surface for any boundary curves. Based on the complexity of VDSI, we also propose an efficient optimization scheme to solve the variational problem inherent in VDSI. Finally, we present an adding point condition, and construct a G continuous quasi-Coons surface to approximate a quadrilateral strip which is converted from a triangle strip of maximum developability. Diverse examples given in this paper demonstrate the efficiency and practicability of the proposed methods.
机译:使用可展开曲面进行建模在计算机图形和计算机辅助设计中起着重要作用。在本文中,我们研究了一个称为变分可展开表面插值(VDSI)的新问题。对于折线边界P,与先前关于从P插入或逼近离散可展开曲面的工作不同,VDSI会对P顶点的子集进行插值,并对其余部分进行近似。确切地说,VDSI允许在指定范围内修改顶点的子集,以使更好的离散可展开表面插入修改后的折线边界。因此,VDSI可以看作是插值和逼近的混合体。通常,获得给定折线边界的离散可展开曲面始终是一项费时的任务。在本文中,我们介绍了一种动态编程方法,可以快速构造任何边界曲线的可展开曲面。基于VDSI的复杂性,我们还提出了一种有效的优化方案来解决VDSI固有的变体问题。最后,我们给出一个加点条件,并构造一个G连续的拟Coons曲面,以近似从最大可显影性的三角形带转换而来的四边形带。本文给出的不同示例说明了所提出方法的有效性和实用性。

著录项

  • 来源
    《Journal of Computing and Information Science in Engineering》 |2014年第2期|021002.1-021002.9|共9页
  • 作者单位

    Institute of Mathematics, Jilin University, Changchun 130012, China;

    Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;

    Department of Mechanical Engineering, Hong Kong University of Science and Technology, Hong Kong 00852, China;

    Institute of Mathematics, Jilin University, Changchun 130012, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号