首页> 外文期刊>Journal of Computing and Information Science in Engineering >Automatic Detection of Fasteners From Tessellated Mechanical Assembly Models
【24h】

Automatic Detection of Fasteners From Tessellated Mechanical Assembly Models

机译:通过细分的机械装配模型自动检测紧固件

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present multiple methods to detect fasteners (bolts, screws, and nuts) from tessellated mechanical assembly models. There is a need to detect these geometries in tessellated formats because of features that are lost during the conversions from other geometry representations to tessellation. Two geometry-based algorithms, projected thread detector (PTD) and helix detector (HD), and four machine learning classifiers, voted perceptron (VP), Naïve Bayes (NB), linear discriminant analysis, and Gaussian process (GP), are implemented to detect fasteners. These six methods are compared and contrasted to arrive at an understanding of how to best perform this detection in practice on large assemblies. Furthermore, the degree of certainty of the automatic detection is also developed and examined so that a user may be queried when the automatic detection leads to a low certainty in the classification. This certainty measure is developed with three probabilistic classifier approaches and one fuzzy logic-based method. Finally, once the fasteners are detected, the authors show how the thread angle, the number of threads, the length, and major and root diameters can be determined. All of the mentioned methods are implemented and compared in this paper. A proposed combination of methods leads to an accurate and robust approach of performing fastener detection.
机译:在本文中,我们提出了从镶嵌机械装配模型中检测紧固件(螺栓,螺钉和螺母)的多种方法。由于在从其他几何图形表示转换为棋盘形转换过程中会丢失特征,因此需要以棋盘形格式检测这些几何图形。实现了两个基于几何的算法,投影线程检测器(PTD)和螺旋检测器(HD),以及四个机器学习分类器,即投票感知器(VP),朴素贝叶斯(NB),线性判别分析和高斯过程(GP)检测紧固件。比较并对比了这六种方法,以了解如何在大型装配体中实际最佳地执行此检测。此外,还开发并检查了自动检测的确定度,使得当自动检测导致分类的低确定性时可以向用户询问。该确定性度量是通过三种概率分类器方法和一种基于模糊逻辑的方法开发的。最后,一旦检测到紧固件,作者将展示如何确定螺纹角度,螺纹数量,长度以及主,根直径。本文提到的所有方法均已实现并进行了比较。所提出的方法的组合导致执行紧固件检测的准确且鲁棒的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号