首页> 外文期刊>Journal of Computing and Information Science in Engineering >Integrating Topic, Sentiment, and Syntax for Modeling Online Reviews: A Topic Model Approach
【24h】

Integrating Topic, Sentiment, and Syntax for Modeling Online Reviews: A Topic Model Approach

机译:集成主题,情感和语法以对在线评论进行建模:主题模型方法

获取原文
获取原文并翻译 | 示例

摘要

Analyzing product online reviews has drawn much interest in the academic field. In this research, a new probabilistic topic model, called tag sentiment aspect models (TSA), is proposed on the basis of Latent Dirichlet allocation (LDA), which aims to reveal latent aspects and corresponding sentiment in a review simultaneously. Unlike other topic models which consider words in online reviews only, syntax tags are taken as visual information and, in this research, as a kind of widely used syntax information, part-of-speech (POS) tags are first reckoned. Specifically, POS tags are integrated into three versions of implementation in consideration of the fact that words with different POS tags might be utilized to express consumers' opinions. Also, the proposed TSA is one unsupervised approach and only a small number of positive and negative words are required to confine different priors for training. Finally, two big datasets regarding digital SLR and laptop are utilized to evaluate the performance of the proposed model in terms of sentiment classification and aspect extraction. Comparative experiments show that the new model can not only achieve promising results on sentiment classification but also leverage the performance on aspect extraction.
机译:分析产品在线评论引起了学术界的极大兴趣。在这项研究中,在潜在狄利克雷分配(LDA)的基础上,提出了一种新的概率主题模型,称为标签情感方面模型(TSA),其目的是在评论中同时揭示潜在方面和相应的情感。与仅在在线评论中仅考虑单词的其他主题模型不同,语法标签被视为可视信息,并且在本研究中,作为一种广泛使用的语法信息,首先考虑了词性(POS)标签。具体而言,考虑到具有不同POS标签的单词可能被用来表达消费者的观点这一事实,将POS标签集成到实施的三个版本中。而且,提出的TSA是一种无监督的方法,只需要少量的肯定和否定词就可以限制不同的先验训练。最后,在情感分类和方面提取方面,利用有关数码单反和笔记本电脑的两个大数据集来评估所提出模型的性能。对比实验表明,新模型不仅可以在情感分类上取得可喜的结果,而且可以在长宽比提取中发挥性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号