首页> 外文期刊>Journal of computer and system sciences >Homomorphism preservation on quasi-wide classes
【24h】

Homomorphism preservation on quasi-wide classes

机译:准全类的同态保留

获取原文
获取原文并翻译 | 示例

摘要

A class of structures is said to have the homomorphism preservation property just in case every first-order formula that is preserved by homomorphisms on this class is equivalent to an existential-positive formula. It is known by a result of Rossman that the class of finite structures has this property and by previous work of Atserias et al. that various of its subclasses do. We extend the latter results by introducing the notion of a quasi-wide class and showing that any quasi-wide class that is closed under taking substructures and disjoint unions has the homomorphism preservation property. We show, in particular, that classes of structures of bounded expansion and classes that locally exclude minors are quasi-wide. We also construct an example of a class of finite structures which is closed under substructures and disjoint unions but does not admit the homomorphism preservation property.
机译:一类结构具有同态保存特性,以防此类同构所保存的每个一阶公式都等同于一个存在性-正公式。罗斯曼(Rossman)的结果表明,有限结构的类具有这种性质,而Atserias等人的先前工作也知道。它的各种子类都可以做到。我们通过引入准宽类的概念来扩展后者的结果,并表明在采用子结构和不交集的情况下封闭的任何准宽类都具有同态保存特性。我们特别表明,有界扩张的结构类别和局部排斥未成年人的类别是准范围的。我们还构造了一类有限结构的示例,该结构在子结构和不相交的并置下是封闭的,但不允许同构保留性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号