首页> 外文会议>Foundations of Software Science and Computational Structures >Classes of Tree Homomorphisms with Decidable Preservation of Regularity
【24h】

Classes of Tree Homomorphisms with Decidable Preservation of Regularity

机译:具有确定性正则性的树同态类

获取原文
获取原文并翻译 | 示例

摘要

Decidability of regularity preservation by a homomorphism is a well known open problem for regular tree languages. Two interesting subclasses of this problem are considered: first, it is proved that regularity preservation is decidable in polynomial time when the domain language is constructed over a monadic signature, i.e., over a signature where all symbols have arity 0 or 1. Second, decidability is proved for the case where non-linearity of the homomorphism is restricted to the root node (or nodes of bounded depth) of any input term. The latter result is obtained by proving decidability of this problem: Given a set of terms with regular constraints on the variables, is its set of ground instances regular? This extends previous results where regular constraints where not considered.
机译:通过同态性保存规则性的可判定性是常规树语言的众所周知的开放问题。考虑了此问题的两个有趣的子类:首先,证明了当域语言是在单子签名之上(即在所有符号都具有偶数为0或1的签名上构造)时,在多项式时间内正则性保留是可判定的。第二,可判定性对于同态的非线性仅限于任何输入项的根节点(或边界深度节点)的情况证明。后一个结果是通过证明这个问题的可判定性而获得的:给定一组对变量有规则约束的条件,其基础实例集是否规则?这扩展了以前的结果,其中不考虑常规约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号