首页> 外文期刊>Journal of computer and system sciences >Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs
【24h】

Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs

机译:基于树分解的索引,用于在图上进行有效的最短路径和最邻近查询查询

获取原文
获取原文并翻译 | 示例

摘要

We propose TEDI, an indexing for solving shortest path, and k Nearest Neighbors (kNN) problems. TEDI is based on the tree decomposition methodology. The graph is first decomposed into a tree in which the node contains vertices. The shortest paths are stored in such nodes. These local shortest paths together with the tree structure constitute the index of the graph. Based on this index, algorithms can be executed to solve the shortest path, as well as the kNN problem more efficiently. Our experimental results show that TEDI offers orders-of-magnitude performance improvement over existing approaches on the index construction time, the index size and the query answering.
机译:我们提出了TEDI(一种用于解决最短路径的索引)和k个最近邻居(kNN)问题。 TEDI基于树分解方法。首先将图分解为节点包含顶点的树。最短路径存储在此类节点中。这些局部最短路径与树结构一起构成了图形的索引。基于此索引,可以执行算法以更有效地解决最短路径以及kNN问题。我们的实验结果表明,与现有方法相比,TEDI在索引构建时间,索引大小和查询回答方面提供了数量级的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号