首页> 外文期刊>Journal of Computer Assisted Learning >Supervised machine learning in multimodal learning analytics for estimating success in project-based learning
【24h】

Supervised machine learning in multimodal learning analytics for estimating success in project-based learning

机译:多模式学习分析中的受监督机器学习,用于评估基于项目的学习的成功

获取原文
获取原文并翻译 | 示例

摘要

Multimodal learning analytics provides researchers new tools and techniques to capture different types of data from complex learning activities in dynamic learning environments. This paper investigates the use of diverse sensors, including computer vision, user-generated content, and data from the learning objects (physical computing components), to record high-fidelity synchronised multimodal recordings of small groups of learners interacting. We processed and extracted different aspects of the students' interactions to answer the following question: Which features of student group work are good predictors of team success in open-ended tasks with physical computing? To answer this question, we have explored different supervised machine learning approaches (traditional and deep learning techniques) to analyse the data coming from multiple sources. The results illustrate that state-of-the-art computational techniques can be used to generate insights into the "black box" of learning in students' project-based activities. The features identified from the analysis show that distance between learners' hands and faces is a strong predictor of students' artefact quality, which can indicate the value of student collaboration. Our research shows that new and promising approaches such as neural networks, and more traditional regression approaches can both be used to classify multimodal learning analytics data, and both have advantages and disadvantages depending on the research questions and contexts being investigated. The work presented here is a significant contribution towards developing techniques to automatically identify the key aspects of students success in project-based learning environments, and to ultimately help teachers provide appropriate and timely support to students in these fundamental aspects.
机译:多模式学习分析为研究人员提供了新的工具和技术,可以从动态学习环境中的复杂学习活动中捕获不同类型的数据。本文研究了各种传感器的使用,包括计算机视觉,用户生成的内容以及来自学习对象(物理计算组件)的数据,以记录与小批学习者互动的高保真同步多模式记录。我们处理并提取了学生互动的不同方面,以回答以下问题:学生小组工作的哪些特征是使用物理计算进行开放式任务时团队成功的良好预测指标?为了回答这个问题,我们探索了不同的监督机器学习方法(传统和深度学习技术)来分析来自多个来源的数据。结果表明,最新的计算技术可用于在学生的基于项目的活动中生成对学习“黑匣子”的见解。通过分析确定的特征表明,学习者的手和脸之间的距离是学生手工艺品质量的有力预测指标,这可以表明学生合作的价值。我们的研究表明,诸如神经网络之类的新方法和有前途的方法,以及更传统的回归方法,都可以用于对多模式学习分析数据进行分类,并且根据研究问题和所研究的环境,都有其优缺点。此处介绍的工作对开发自动识别基于项目的学习环境中学生成功的关键方面并最终帮助教师在这些基本方面向学生提供适当和及时的支持的技术做出了重大贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号