首页> 外文期刊>Journal of computational science >Multi-objective constrained black-box optimization using radial basis function surrogates
【24h】

Multi-objective constrained black-box optimization using radial basis function surrogates

机译:使用径向基函数替代的多目标约束黑箱优化

获取原文
获取原文并翻译 | 示例

摘要

This article presents a framework for a surrogate-based stochastic search algorithm for multi-objective and constrained black-box optimization where the objective and constraint function values are outputs of computationally expensive computer simulations. Unlike many other approaches, the proposed framework is not population-based and handles constraints without explicitly using a penalty function. In each iteration, the algorithm constructs or updates response surface models or surrogate models of the objective and constraint functions. Then, it generates multiple random trial points according to some probability distribution over the search space. The surrogate models for the objective and constraint functions are then used to identify the trial points that are predicted to be feasible and nondominated. From this set of trial points, two criteria are used to select the next sample point where the expensive objective and constraint functions will be evaluated. These criteria are the minimum distance of the predicted objective vector of a trial point from the current set of nondominated objective vectors and also the minimum distance of the trial point from previous sample points. The proposed framework is implemented using radial basis function (RBF) surrogate models and compared with alternative methods, including NSGA-II and Uniform Random Search on 28 benchmark test problems. The numerical results indicate that the proposed method is promising for computationally expensive multi-objective and constrained black-box optimization. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种用于多目标和约束黑箱优化的基于代理的随机搜索算法的框架,其中目标和约束函数值是计算昂贵的计算机模拟的输出。与许多其他方法不同,所提出的框架不是基于人群的,并且可以在不显式使用惩罚函数的情况下处理约束。在每次迭代中,算法都会构造或更新目标和约束函数的响应面模型或替代模型。然后,它根据搜索空间上的一些概率分布生成多个随机试验点。然后使用目标函数和约束函数的替代模型来识别预测为可行且不受支配的试验点。从这组试验点中,使用两个标准来选择下一个采样点,在该点上将评估昂贵的目标和约束函数。这些标准是试验点的预测目标向量与当前非支配目标向量集之间的最小距离,也是试验点与先前样本点之间的最小距离。所提出的框架是使用径向基函数(RBF)替代模型实现的,并与包括28种基准测试问题的NSGA-II和均匀随机搜索在内的替代方法进行了比较。数值结果表明,所提出的方法在计算上昂贵的多目标约束黑盒优化中是有前途的。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号