首页> 外文期刊>Journal of computational science >Gaussian process emulation of an individual-based model simulation of microbial communities
【24h】

Gaussian process emulation of an individual-based model simulation of microbial communities

机译:基于个体的微生物群落模型模拟的高斯过程仿真

获取原文
获取原文并翻译 | 示例

摘要

The ability to make credible simulations of open engineered biological systems is an important step towards the application of scientific knowledge to solve real-world problems in this challenging, complex engineering domain. An important application of this type of knowledge is in the design and management of wastewater treatment systems. One of the crucial aspects of an engineering biology approach to wastewater treatment study is the ability to run a simulation of complex biological communities. However, the simulation of open biological systems is challenging because they often involve a large number of bacteria that ranges from order 10(12) (a baby's microbiome) to 10(18) (a wastewater treatment plant) individual particles, and are physically complex. Since the models are computationally expensive, and due to computing constraints, the consideration of only a limited set of scenarios is often possible. A simplified approach to this problem is to use a statistical approximation of the simulation ensembles derived from the complex models at a fine scale which will help in reducing the computational burden. Our aim in this paper is to build a cheaper surrogate of an individual-based (IS) model simulation of microbial communities. The paper focuses on how to use an emulator as an effective tool for studying and incorporating microscale processes in a computationally efficient way into macroscale models. The main issue we address is a strategy for emulating high-level summaries from the IB model simulation data. We use a Gaussian process regression model for the emulation. Under cross-validation, the percentage of variance explained for the univariate emulator ranges from 83-99% and 87-99% for the multivariate emulators, and for both biofilms and floc. Our emulators show an approximately 220-fold increase in computational efficiency. The sensitivity analyses indicated that substrate nutrient concentration for nitrate, carbon, nitrite and oxygen as well as the maximum growth rate for heterotrophic bacteria are the most important parameters for the predictions. We observe that the performance of the single step emulator depends hugely on the initial conditions and sample size taken for the normal approximation. We believe that the development of an emulator for an IB model is of strategic importance for using microscale understanding to enable macroscale problem solving. (C) 2017 The Authors. Published by Elsevier B.V.
机译:对开放式工程生物系统进行可靠仿真的能力是应用科学知识解决这一充满挑战的复杂工程领域中现实问题的重要一步。此类知识的重要应用是废水处理系统的设计和管理。工程生物学方法用于废水处理研究的关键方面之一是能够对复杂的生物群落进行模拟。但是,开放式生物系统的模拟具有挑战性,因为它们通常涉及从10(12)级(婴儿的微生物组)到10(18)(废水处理厂)的单个颗粒的大量细菌,并且物理上很复杂。由于模型的计算量很大,并且由于计算限制,通常仅考虑有限的一组场景是可能的。解决此问题的一种简化方法是在精细尺度上使用从复杂模型派生的仿真集合的统计近似值,这将有助于减轻计算负担。本文的目的是为微生物群落的基于个人(IS)的模型模拟建立一个更便宜的替代方案。本文着重于如何使用仿真器作为有效工具,以有效的计算方式将微观过程研究并纳入宏观模型。我们解决的主要问题是一种从IB模型模拟数据中模拟高级摘要的策略。我们使用高斯过程回归模型进行仿真。在交叉验证下,单变量仿真器解释的方差百分比范围在多变量仿真器以及生物膜和絮凝物的83-99%和87-99%范围内。我们的仿真器显示出约220倍的计算效率提高。敏感性分析表明,硝酸盐,碳,亚硝酸盐和氧气的底物养分浓度以及异养细菌的最大生长速率是预测的最重要参数。我们观察到,单步仿真器的性能在很大程度上取决于初始条件和正常近似所采用的样本大小。我们认为,开发IB模型的仿真器对于使用微观理解来解决宏观问题具有战略重要性。 (C)2017作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号