首页> 外文期刊>Journal of computational science >Bayesian emulation and calibration of an individual-based model of microbial communities
【24h】

Bayesian emulation and calibration of an individual-based model of microbial communities

机译:基于个人的微生物群落模型的贝叶斯仿真和校准

获取原文
获取原文并翻译 | 示例

摘要

Individual-based (IB) modelling has been widely used for studying the emergence of complex interactions of bacterial biofilms and their environment. We describe the emulation and calibration of an expensive dynamic simulator of an IB model of microbial communities. We used a combination of multivariate dynamic linear models (DLM) and a Gaussian process to estimate the model parameters of our dynamic emulators. The emulators incorporate a smoothly varying and nonstationary trend that is modelled as a deterministic function of explanatory variables while the Gaussian process (GP) is allowed to capture the remaining intrinsic local variations. We applied this emulation strategy for parameter calibration of a newly developed model for simulation of microbial communities against the iDynoMiCS model. The percentage of variance explained for the four outputs biomass concentration, the total number of particles, biofilm average height and surface roughness range between 84-92% and 97-99% for univariate and multivariate emulators respectively. The simulation-based sensitivity analysis identified carbon substrate, oxygen concentration and maximum specific growth rate for heterotrophic bacteria as the most critical variables for predictions. The calibration results also indicated a general reduction of uncertainty levels in most of the parameters. The study has helped us identify the tradeoff in using different types of models for microbial simulation. The approach illustrated here provides a tractable and computationally efficient technique for calibrating the parameters of an expensive computer model. Crown Copyright (C) 2018 Published by Elsevier B.V.
机译:基于个体的(IB)建模已被广泛用于研究细菌生物膜与其环境之间复杂相互作用的出现。我们描述了微生物群落的IB模型的昂贵的动态模拟器的仿真和校准。我们使用了多元动态线性模型(DLM)和高斯过程的组合来估计动态仿真器的模型参数。仿真器包含一个平滑变化且不稳定的趋势,该趋势被建模为解释变量的确定性函数,同时允许高斯过程(GP)捕获剩余的固有局部变化。我们将这种仿真策略用于新开发模型的参数校准,以针对iDynoMiCS模型模拟微生物群落。对于单变量和多变量模拟器,四个输出生物质浓度,颗粒总数,生物膜平均高度和表面粗糙度的方差百分比分别在84-92%和97-99%之间。基于模拟的敏感性分析确定了异养细菌的碳底物,氧浓度和最大比生长速率是预测的最关键变量。校准结果还表明,大多数参数的不确定性水平普遍降低。该研究帮助我们确定了使用不同类型的模型进行微生物模拟时的权衡。此处说明的方法提供了一种易于处理且计算效率高的技术,用于校准昂贵的计算机模型的参数。官方版权(C)2018由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号