首页> 外文期刊>Journal of computational science >Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models
【24h】

Using efficient parallelization in Graphic Processing Units to parameterize stochastic fire propagation models

机译:在图形处理单元中使用有效的并行化参数化随机火灾传播模型

获取原文
获取原文并翻译 | 示例

摘要

Wildfires are a major concern in Argentinian northwestern Patagonia and in many ecosystems and human societies around the world. We developed an efficient cellular automata model in Graphic Processing Units (GPUs) to simulate fire propagation. The graphical advantages of GPUs were exploited by overlapping wind direction, as well as vegetation, slope, and aspect maps, taking into account relevant landscape characteristics for fire propagation. Stochastic propagation was performed with a probability model that depends on aspect, slope, wind direction and vegetation type. Implementing a Genetic Algorithm search strategy we show, using simulated fires, that we recover the five parameter values that characterize fire propagation. The efficiency of the fire simulation procedure allowed us to also estimate the fire ignition point when it is unknown as well as its associated uncertainty, making this approach suitable for the analysis of fire spread based on maps of burnt areas without knowing the point of origin of the fires or how they spread. (C) 2018 Elsevier B.V. All rights reserved.
机译:野火是阿根廷西北巴塔哥尼亚以及世界各地许多生态系统和人类社会的主要关切。我们在图形处理单元(GPU)中开发了一种有效的元胞自动机模型来模拟火势蔓延。 GPU的图形优势是通过重叠的风向以及植被,坡度和纵横图来开发的,同时考虑到了火灾蔓延的相关景观特征。随机传播是根据概率模型执行的,该概率模型取决于纵横比,坡度,风向和植被类型。实施遗传算法搜索策略,我们使用模拟火灾显示,我们恢复了表征火灾传播的五个参数值。火灾模拟程序的效率使我们还可以估算未知时的着火点及其相关的不确定性,这使得该方法适用于基于燃烧区域图的火势蔓延分析,而无需知道火源的起点。火或它们如何扩散。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号