首页> 外文期刊>Journal of computational science >Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling
【24h】

Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling

机译:带有参数校正线性单元和基于等级的随机池的九层卷积神经网络对乳房的异常识别

获取原文
获取原文并翻译 | 示例

摘要

AimAbnormal breast appears similar as dense breast in mammography, which makes it a challenge for radiologists to identify. Scholars have proposed numerous computer-vision and machine-learning based approaches. Nevertheless, the features were manually designed.MethodIn this study, the breast dataset was chosen as the open-access mini MIAS dataset. Cost-sensitive learning was used to balance the dataset. Data augmentation was used to increase the size of training set. We proposed an improved nine-layer convolutional neural network (CNN). In addition, we compared three activation functions: rectified linear unit (ReLU), leaky ReLU, and parametric ReLU. Besides, six pooling techniques were compared: average pooling, max pooling, stochastic pooling, rank-based average pooling, rank-based weighted pooling, and rank-based stochastic pooling.ResultsThe results over 100 test set showed the combination of parametric ReLU and rank-based stochastic pooling performed the best, with sensitivity of 93.4%, specificity of 94.6%, precision of 94.5%, and accuracy of 94.0%. This result is better than six state-of-the-art breast cancer detection approaches.ConclusionDeep learning can provide better detection results than traditional artificial intelligence methods. We validate why we set the number of convolution layers as 2. We shall try to further improve the performance of this proposed method.
机译:目的:乳房X光检查中异常乳房的表现与密集乳房相似,这使放射科医生难以识别。学者们提出了许多基于计算机视觉和机器学习的方法。不过,这些功能是手动设计的。 n方法在本研究中,乳房数据集被选为开放式迷你MIAS数据集。成本敏感型学习用于平衡数据集。数据扩充被用来增加训练集的大小。我们提出了一种改进的九层卷积神经网络(CNN)。此外,我们比较了三种激活函数:整流线性单位(ReLU),泄漏ReLU和参数ReLU。此外,还比较了六种合并技术:平均合并,最大合并,随机合并,基于等级的平均合并,基于等级的加权合并和基于等级的随机合并。 n结果100多个测试集的结果表明参数ReLU和基于等级的随机池表现最佳,灵敏度为93.4%,特异性为94.6%,精度为94.5%,准确性为94.0%。此结果优于六种最新的乳腺癌检测方法。 n结论深度学习比传统的人工智能方法可提供更好的检测结果。我们验证了为什么将卷积层数设置为2的原因。我们将尝试进一步改善此提议方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号