首页> 外文期刊>Journal of computational science >Design and simulation of the emergent behavior of small drones swarming for distributed target localization
【24h】

Design and simulation of the emergent behavior of small drones swarming for distributed target localization

机译:小型无人机群对分布式目标定位的突现行为设计与仿真

获取原文
获取原文并翻译 | 示例

摘要

A swarm of autonomous drones with self-coordination and environment adaptation can offer a robust, scalable and flexible manner to localize objects in an unexplored, dangerous or unstructured environment. We design a novel coordination algorithm combining three biologically inspired processes: stigmergy, flocking and evolution. Stigmergy, a form of coordination exhibited by social insects, is exploited to attract drones in areas with potential targets. Flocking enables efficient cooperation between flock mates upon target detection, while keeping an effective scan. The two mechanisms can interoperate if their structural parameters are correctly tuned for a given scenario. Differential evolution adapts the swarm coordination according to environmental conditions. The performance of the proposed algorithm is examined with synthetic and real-world scenarios. (C) 2018 Elsevier B.V. All rights reserved.
机译:具有自我协调和环境适应能力的无人驾驶无人机群可以提供强大,可扩展和灵活的方式,以将对象定位在未开发,危险或非结构化的环境中。我们设计了一种新颖的协调算法,该算法结合了三个生物学启发的过程:双能,植绒和进化。 Stigmergy是社交昆虫表现出的一种协调形式,被利用来吸引具有潜在目标的地区的无人机。植绒可在检测到目标的同时使成群伴侣之间进行有效的协作,同时保持有效的扫描。如果针对给定场景正确调整了它们的结构参数,则这两种机制可以互操作。差异进化根据环境条件适应群体协调。所提出的算法的性能在综合和现实情况下进行了检验。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号