首页> 外文期刊>Journal of Computational Physics >A GENERALISATION OF PLANAR MAGNETIC GRADIOMETER DESIGN VIA ORTHOGONAL POLYNOMIALS
【24h】

A GENERALISATION OF PLANAR MAGNETIC GRADIOMETER DESIGN VIA ORTHOGONAL POLYNOMIALS

机译:基于正交多项式的平面磁辐射计设计的广义化

获取原文
获取原文并翻译 | 示例

摘要

We describe a problem in magnetic field detection involving a form of spatial filtering to detect weak signal sources in the presence of noise. Conventionally N-th order magnetic field gradiometers of fixed geometry are used in this situation. The pre-defined geometry completely determines the spatial sensitivity of such gradiometers. We demonstrate a method of making such devices much more flexible in that the near-source response can be modified while maintaining gradiometric order. The problem is described by the solution of N equations in sums and differences of powers, up to order N-r of m variables, with m greater than or equal to N. The values of (m - N) variables are chosen on physical considerations. We show that when values of the m variables are a solution set, they may be expressed as the roots of two polynomial equations, whose order is no greater than (m + 1)/2 when m is odd, or m/2 when m is even. These polynomial equations can be expressed as a linear combination of Chebyshev polynomials of the first and second kinds in the case of m odd, and a related pair,fully described, in the case of m even. Existence of, and bounds on, solution sets are discussed and examples given. (c) 1995 Academic Press. [References: 12]
机译:我们描述了磁场检测中的一个问题,其中涉及一种形式的空间滤波,以在存在噪声的情况下检测弱信号源。在这种情况下,通常使用固定几何形状的N阶磁场梯度仪。预先定义的几何形状完全确定了此类梯度计的空间灵敏度。我们演示了一种使此类设备更加灵活的方法,其中可以在保持梯度顺序的同时修改近源响应。这个问题由幂和和差的N个方程的解来描述,直到m个变量的N-r阶,且m大于或等于N。(m-N)个变量的值是根据物理考虑选择的。我们表明,当m个变量的值是一个解集时,它们可以表示为两个多项式方程的根,当m为奇数时,其阶次不大于(m + 1)/ 2,或者当m为奇数时,阶次不大于(m / 2)甚至。这些多项式方程式可以表示为在奇数m的情况下第一类和第二类切比雪夫多项式的线性组合,在m偶数的情况下可以充分描述相关对。讨论了解集的存在性和界限,并给出了示例。 (c)1995年学术出版社。 [参考:12]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号