首页> 外文期刊>Journal of Computational Neuroscience >A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of ODEs
【24h】

A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of ODEs

机译:尖刺神经网络的粗粒度框架:从基于电导的强耦合的积分发射神经元到ODE的增强系统

获取原文
获取原文并翻译 | 示例

摘要

Homogeneously structured, fluctuation-driven networks of spiking neurons can exhibit a wide variety of dynamical behaviors, ranging from homogeneity to synchrony. We extend our partitioned-ensemble average (PEA) formalism proposed in Zhang et al. (Journal of Computational Neuroscience, 37(1), 81-104, 2014a) to systematically coarse grain the heterogeneous dynamics of strongly coupled, conductance-based integrate-and-fire neuronal networks. The population dynamics models derived here successfully capture the so-called multiple-firing events (MFEs), which emerge naturally in fluctuation-driven networks of strongly coupled neurons. Although these MFEs likely play a crucial role in the generation of the neuronal avalanches observed in vitro and in vivo, the mechanisms underlying these MFEs cannot easily be understood using standard population dynamic models. Using our PEA formalism, we systematically generate a sequence of model reductions, going from Master equations, to Fokker-Planck equations, and finally, to an augmented system of ordinary differential equations. Furthermore, we show that these reductions can faithfully describe the heterogeneous dynamic regimes underlying the generation of MFEs in strongly coupled conductance-based integrate-and-fire neuronal networks.
机译:尖峰神经元的同质结构,波动驱动网络可以表现出各种各样的动力学行为,从同质性到同步性。我们扩展了Zhang等人提出的分区集合平均(PEA)形式主义。 (Journal of Computational Neuroscience,37(1),81-104,2014a),系统地粗化强耦合,基于电导的集成即火神经元网络的异质动力学。此处导出的种群动力学模型成功捕获了所谓的多次射击事件(MFE),该事件自然出现在强烈耦合的神经元的波动驱动网络中。尽管这些MFE在体外和体内观察到的神经元雪崩的产生中可能起着至关重要的作用,但是使用标准的种群动态模型并不容易理解这些MFE的潜在机制。使用我们的PEA形式主义,我们系统地生成了一系列模型约简,从Master方程到Fokker-Planck方程,最后到一个常微分方程的扩充系统。此外,我们表明,这些减少可以忠实地描述基于强耦合的基于电导的集成和发射神经网络中MFE生成的异质动态机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号