首页> 外文期刊>Journal of Computational Neuroscience >Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons
【24h】

Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons

机译:非线性积分并发射神经元的丘脑,皮层和丘脑皮层网络中的自持异步不规则状态和上下状态

获取原文
获取原文并翻译 | 示例

摘要

Randomly-connected networks of integrate-and-fire (IF) neurons are known to display asynchronous irregular (AI) activity states, which resemble the discharge activity recorded in the cerebral cortex of awake animals. However, it is not clear whether such activity states are specific to simple IF models, or if they also exist in networks where neurons are endowed with complex intrinsic properties similar to electro-physiological measurements. Here, we investigate the occurrence of AI states in networks of nonlinear IF neurons, such as the adaptive exponential IF (Brette-Gerstner-Izhikevich) model. This model can display intrinsic properties such as low-threshold spike (LTS), regular spiking (RS) or fast-spiking (FS). We successively investigate the oscillatory and AI dynamics of thalamic, cortical and thalamocortical networks using such models. AI states can be found in each case, sometimes with surprisingly small network size of the order of a few tens of neurons. We show that the presence of LTS neurons in cortex or in thalamus, explains the robust emergence of AI states for relatively small network sizes. Finally, we investigate the role of spike-frequency adaptation (SFA). In cortical networks with strong SFA in RS cells, the AI state is transient, but when SFA is reduced, AI states can be self-sustained for long times. In thalamocortical networks, AI states are found when the cortex is itself in an AI state, but with strong SFA, the thalamocortical network displaysrnUp and Down state transitions, similar to intracellular recordings during slow-wave sleep or anesthesia. Self-sustained Up and Down states could also be generated by two-layer cortical networks with LTS cells. These models suggest that intrinsic properties such as adaptation and low-threshold bursting activity are crucial for the genesis and control of AI states in thalamocortical networks.
机译:众所周知,整合与发射(IF)神经元的随机连接网络显示出异步不规则(AI)活动状态,该状态类似于清醒动物大脑皮层中记录的放电活动。但是,尚不清楚此类活动状态是否特定于简单的IF模型,或者是否也存在于神经元具有类似于电生理测量的复杂内在属性的网络中。在这里,我们研究了非线性IF神经元网络中AI状态的发生,例如自适应指数IF(Brette-Gerstner-Izhikevich)模型。该模型可以显示固有特性,例如低阈值尖峰(LTS),常规尖峰(RS)或快速尖峰(FS)。我们先后使用此类模型研究了丘脑,皮质和丘脑皮质网络的振荡和AI动力学。在每种情况下都可以找到AI状态,有时网络的尺寸很小,只有几十个神经元。我们显示LTS神经元在皮质或丘脑中的存在,解释了相对较小网络规模的AI状态的强大出现。最后,我们研究了尖峰频率适应(SFA)的作用。在RS细胞中具有强大SFA的皮质网络中,AI状态是瞬态的,但是当SFA降低时,AI状态可以长期自我维持。在丘脑皮层网络中,当皮质本身处于AI状态时会发现AI状态,但是具有强大的SFA,丘脑皮层网络会显示“向上”和“向下”状态转换,类似于慢波睡眠或麻醉期间的细胞内记录。具有LTS单元的两层皮质网络也可以生成自我维持的向上和向下状态。这些模型表明,诸如适应性和低阈值爆发活动之类的内在特性对于丘脑皮层网络中AI状态的产生和控制至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号