首页> 外文期刊>Neural Networks, IEEE Transactions on >Self-Sustained Irregular Activity in 2-D Small-World Networks of Excitatory and Inhibitory Neurons
【24h】

Self-Sustained Irregular Activity in 2-D Small-World Networks of Excitatory and Inhibitory Neurons

机译:二维的兴奋和抑制性神经元小世界网络中的自我维持的不规则活动

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the self-sustained irregular firing activity in 2-D small-world (SW) neural networks consisting of both excitatory and inhibitory neurons by computational modeling. For a proper proportion of unidirectional shortcuts, the stable self-sustained activity with irregular firing states indeed occurs in the considered network. By varying the shortcut density while keeping other system parameters fixed, different levels of irregular firing states, from weakly irregular to Poisson-like and burst firing states, are obtained in 2-D SW neural networks. It is also observed that this activity is sensitive to small perturbations, which might provide a possible mechanism for producing chaos. On the other hand, we find that several other system parameters, such as the network size and refractory period, have significant impact on this activity. Further simulation results show that the 2-D SW neural network can sustain such long-lasting firing behavior by using a smaller number of connections than the random neural network.
机译:在本文中,我们通过计算模型研究了由兴奋性神经元和抑制​​性神经元组成的二维小世界(SW)神经网络中的自持不规则射击行为。对于适当比例的单向快捷方式,在考虑的网络中确实会发生具有不规则触发状态的稳定的自我维持活动。通过在保持其他系统参数不变的情况下改变快捷方式密度,可以在二维SW神经网络中获得从弱不规则状态到类Poisson状和猝发状态的不同级别的不规则点火状态。还观察到,这种活动对小扰动敏感,这可能提供产生混乱的可能机制。另一方面,我们发现其他几个系统参数(例如网络大小和不应期)对该活动有重大影响。进一步的仿真结果表明,与随机神经网络相比,使用更少的连接数,二维SW神经网络可以维持这种持久的发射行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号