首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >State of charge and state of power estimation for power battery in HEV based on optimized particle filtering
【24h】

State of charge and state of power estimation for power battery in HEV based on optimized particle filtering

机译:基于优化粒子滤波的HEV电池电力电池电力电池的充电状态和状态

获取原文
获取原文并翻译 | 示例

摘要

To improve the performance of the battery management system in hybrid electric vehicle (HEV), the core is to estimate the state of charge (SOC) and the state of power capability (SOP) of power battery quickly and accurately on-line. Firstly, in order to improve the SOC estimation accuracy and reduce the estimation error of battery, an improved particle filter algorithm based on particle swarm optimization (PSO) is proposed. Aiming at the uncertainty of system noise in traditional particle filter (PF) algorithm, the PSO algorithm is used to optimize the system noise of PF and to improve the estimation accuracy. Secondly, a method that regards the battery voltage, current and the optimized estimation of SOC as constraints to predict the actual maximum charge-discharge power of the battery is proposed. The simulation results show that the optimized SOC estimation and SOP prediction algorithm has higher accuracy and is applicable to the dynamic estimation of the actual driving cycles of hybrid electric vehicles.
机译:为了提高混合动力电动车辆(HEV)的电池管理系统的性能,核心是在线快速准确地估计电池的充电状态(SOC)和功率能力(SOP)的状态。首先,为了提高SOC估计精度并降低电池的估计误差,提出了一种基于粒子群优化(PSO)的改进的粒子滤波算法。针对传统粒子滤波器(PF)算法中系统噪声的不确定性,PSO算法用于优化PF的系统噪声,提高估计精度。其次,提出了一种关于SOC作为限制的电池电压,电流和优化估计以预测电池的实际最大电荷放电功率的方法。仿真结果表明,优化的SOC估计和SOP预测算法具有更高的精度,并且适用于混合动力电动车辆的实际驱动周期的动态估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号