首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >WSN blind area predictive regression control model based on interpolation algorithm optimization
【24h】

WSN blind area predictive regression control model based on interpolation algorithm optimization

机译:基于插值算法优化的WSN盲区预测回归控制模型

获取原文
获取原文并翻译 | 示例

摘要

In order to correct the error data contained in the sequential data collected by sensor nodes, in the relatively harsh deployment environment of sensor nodes, limited sensor nodes make WSN (Wireless Sensor Network) have monitoring blind areas. Based on Kriging interpolation method and natural neighbourhood interpolation algorithm, the problems of data specification and spatial interpolation in WSN network are solved. The research results show that the algorithm divides irregular meshes into regions to be interpolated, and then the k-hop neighbour nodes of the prediction points are determined as the parameter set of Kriging interpolation. Finally, the Kriging coefficients are solved, and the prediction data of the points to be interpolated are calculated according to the Voronoi area and the observation values of the neighbour nodes, thus the value of the prediction points is calculated. It can be seen that this saves time and space greatly, and simulation experiments show that the natural neighbourhood interpolation results are closer to the real value.
机译:为了校正由传感器节点收集的顺序数据中包含的误差数据,在传感器节点的相对苛刻的部署环境中,有限的传感器节点使WSN(无线传感器网络)具有监测盲区。基于Kriging插值方法和自然邻域插值算法,解决了WSN网络数据规范和空间插值的问题。研究结果表明,该算法将不规则网格划分为要插值的区域,然后将预测点的K-Hop邻居节点被确定为Kriging插值的参数集。最后,求解克里格化系数,并且根据voronoi区域和邻居节点的观察值计算要插值的点的预测数据,从而计算预测点的值。可以看出,这极大地节省了时间和空间,仿真实验表明,自然邻域插值结果更接近实际值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号