首页> 外文期刊>Journal of Computational Mathematics >OPTIMAL MIXED H -- P FINITE ELEMENT METHODS FOR STOKES AND NON-NEWTONIAN FLOW
【24h】

OPTIMAL MIXED H -- P FINITE ELEMENT METHODS FOR STOKES AND NON-NEWTONIAN FLOW

机译:斯托克斯和非牛顿流的最优混合H-P有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Based upon a new mixed variational formulation for the three-field Stokes equations and linearized Non-Newtonian flow, an h -- p finite element method is presented with or without a stabilization. As to the variational formulation without stabilization, optimal error bounds in h as well as in p are obtained. As with stabilization, optimal error bounds are obtained which is optimal in h and one order deterioration in p for the pressure, that is consistent with numerical results in [9, 12] and therefore solved the problem therein. Moreover, we proposed a stabilized formulation which is optimal in both h and p.
机译:基于三场斯托克斯方程的新混合变分公式和线性化非牛顿流,提出了带有或不带有稳定项的h-p有限元方法。对于没有稳定化的变化公式,可获得h和p的最佳误差范围。与稳定化一样,获得了最佳误差范围,该误差范围在h处是最佳的,而在p处是压力的一阶恶化,这与[9,12]中的数值结果一致,因此解决了其中的问题。此外,我们提出了在h和p均最佳的稳定配方。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号