首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Mixed hp finite element methods for Stokes and non-Newtonian flow
【24h】

Mixed hp finite element methods for Stokes and non-Newtonian flow

机译:Stokes和非牛顿流的混合hp有限元方法

获取原文
获取原文并翻译 | 示例

摘要

We analyze the stability of hp finite elements for viscous incompressible flow. For the classical velocity-pressure formulation, we give new estimates for the discrete inf-sup constants on geometric meshes which are explicit in the polynomial degree k of the elements. In particular, we obtain new bounds for p-elements on triangles. For the three-held Stokes problem describing linearized non-Newtonian flow, we estimate discrete inf-sup constants explicit in both h and k for various subspace choices (continuous and discontinuous) for the extra-stress. We also give a stability analysis of the hp-version of an elastic-viscous-split-stress ( EVSS) method and present elements that are stable and optimal in h and k. Finally, we present numerical results that show the exponential convergence of the hp version for Stokes flow, over unsmooth domains.
机译:我们分析了hp有限元对粘性不可压缩流的稳定性。对于经典的速度-压力公式,我们为几何网格上的离散inf-sup常数提供了新的估计,这些常数在元素的多项式k中是明确的。特别是,我们获得三角形上p元素的新边界。对于描述线性化非牛顿流的三持有式斯托克斯问题,我们估计了在h和k中对于额外应力的各种子空间选择(连续和不连续)在h和k中都显式的离散inf-sup常数。我们还对弹性粘滞分裂应力(EVSS)方法的hp版本进行了稳定性分析,并给出了在h和k中稳定且最佳的元素。最后,我们提供了数值结果,显示了在不光滑域上,对于Stokes流,hp版本的指数收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号