首页> 外文期刊>Journal of Computational Mathematics >A QR DECOMPOSITION BASED SOLVER FOR THE LEAST SQUARES PROBLEMS FROM THE MINIMAL RESIDUAL METHOD FOR THE SYLVESTER EQUATION
【24h】

A QR DECOMPOSITION BASED SOLVER FOR THE LEAST SQUARES PROBLEMS FROM THE MINIMAL RESIDUAL METHOD FOR THE SYLVESTER EQUATION

机译:基于Sylvester方程最小残差方法的最小二乘问题基于QR分解的求解器

获取原文
获取原文并翻译 | 示例

摘要

Based on the generalized minimal residual (GMRES) principle, Hu and Reichel proposed a minimal residual algorithm for the Sylvester equation. The algorithm requires the solution of a structured least squares problem. They form the normal equations of the least squares problem and then solve it by a direct solver, so it is susceptible to instability. In this paper, by exploiting the special structure of the least squares problem and working on the problem directly, a numerically stable QR decomposition based algorithm is presented for the problem. The new algorithm is more stable than the normal equations algorithm of Hu and Reichel. Numerical experiments are reported to confirm the superior stability of the new algorithm.
机译:根据广义最小残差(GMRES)原理,Hu和Reichel提出了Sylvester方程的最小残差算法。该算法需要解决结构化最小二乘问题。它们形成最小二乘问题的法线方程,然后通过直接求解器求解,因此很容易出现不稳定现象。本文利用最小二乘问题的特殊结构,直接对问题进行研究,提出了一种基于数值稳定QR分解的算法。新算法比Hu和Reichel的法线方程算法更稳定。据报道,数值实验证实了新算法的优越稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号