首页> 外文期刊>Journal of Computational Mathematics >MULTISYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHROEDINGER EQUATIONS WITH WAVE OPERATOR
【24h】

MULTISYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE NONLINEAR SCHROEDINGER EQUATIONS WITH WAVE OPERATOR

机译:波动算子的非线性Schrodinger方程的多辛Fourier拟谱方法。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the multisymplectic Fourier pseudospectral scheme for initial-boundary value problems of nonlinear Schroedinger equations with wave operator is considered. We investigate the local and global conservation properties of the multisymplectic discretization based on Fourier pseudospectral approximations. The local and global spatial conservation of energy is proved. The error estimates of local energy conservation law are also derived. Numerical experiments are presented to verify the theoretical predications.
机译:本文考虑了带有波动算子的非线性Schroedinger方程初边值问题的多辛氏傅拟谱。我们研究基于傅立叶拟谱逼近的多符号离散化的局部和全局守恒性质。证明了局部和全局空间能量守恒。还推导了当地节能法的误差估计。进行了数值实验,以验证理论预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号