首页> 外文期刊>Journal of complexity >Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus
【24h】

Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus

机译:任意属下具有显式实数乘法的超椭圆曲线上的点计数

获取原文
获取原文并翻译 | 示例

摘要

We present a probabilistic Las Vegas algorithm for computing the local zeta function of a genus-g hyperelliptic curve defined over F-q with explicit real multiplication (RM) by an order Z[eta] in a degree-g totally real number field.It is based on the approaches by Schoof and Pila in a more favourable case where we can split the l-torsion into g kernels of endomorphisms, as introduced by Gaudry, Kohel, and Smith in genus 2. To deal with these kernels in any genus, we adapt a technique that the author, Gaudry, and Spaenlehauer introduced to model the l-torsion by structured polynomial systems. Applying this technique to the kernels, the systems we obtain are much smaller and so is the complexity of solving them.Our main result is that there exists a constant c > 0 such that, for any fixed g, this algorithm has expected time and space complexity O((log q)(c)) as g grows and the characteristic is large enough. We prove that c <= 9 and we also conjecture that the result still holds for c = 7. (C) 2019 Elsevier Inc. All rights reserved.
机译:我们提出了一种概率拉斯维加斯算法,用于计算在度数为g的实数域中以显式实数乘积(RM)乘以Zη的Fq定义的属g的超椭圆曲线的局部zeta函数。以Schoof和Pila的方法为例,在更有利的情况下,我们可以将l扭曲分为同构的g个内核,如高迪,科埃尔和史密斯在第2类中介绍的那样。要处理这些类的任何内核,我们都需要适应作者Gaudry和Spaenlehauer引入了一种通过结构化多项式系统对L扭转建模的技术。将这种技术应用于内核,我们获得的系统要小得多,因此求解它们的复杂性也要大得多。我们的主要结果是存在一个常数c> 0,因此对于任何固定的g,该算法都具有预期的时间和空间随g的增长而复杂度O((log q)(c))并且特性足够大。我们证明c <= 9,并且我们还猜想对于c = 7,结果仍然成立。(C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号