首页> 外文会议>International Workshop on Arithmetic of Finite Fields(WAIFI 2007); 200706; Madrid(ES) >Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine Representation
【24h】

Explicit Formulas for Real Hyperelliptic Curves of Genus 2 in Affine Representation

机译:仿射表示中属2的实数超椭圆曲线的显式公式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present for the first time efficient explicit formulas for arithmetic in the degree 0 divisor class group of a real hyperelliptic curve. Hereby, we consider real hyperelliptic curves of genus 2 given in affine coordinates for which the underlying finite field has characteristic > 3. These formulas are much faster than the optimized generic algorithms for real hyperelliptic curves and the cryptographic protocols in the real setting perform almost as well as those in the imaginary case. We provide the idea for the improvements and the correctness together with a comprehensive analysis of the number of field operations. Finally, we perform a direct comparison of cryptographic protocols using explicit formulas for real hyperelliptic curves with the corresponding protocols presented in the imaginary model.
机译:在本文中,我们首次提出了在实际超椭圆曲线的0度除数类组中用于算术的高效有效显式公式。因此,我们考虑在仿射坐标系中给出的属2的实际超椭圆曲线,其有限域的特征>3。这些公式比针对实际超椭圆曲线的优化通用算法要快得多,并且真实环境中的密码协议的性能几乎为以及假想的情况。我们提供了改进和正确性的想法,并全面分析了现场作业的数量。最后,我们使用真实超椭圆曲线的显式公式与虚模型中显示的相应协议,对密码协议进行直接比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号