首页> 外文期刊>Journal of complexity >On weighted Hilbert spaces and integration of functions of infinitely many variables
【24h】

On weighted Hilbert spaces and integration of functions of infinitely many variables

机译:关于加权希尔伯特空间和无穷多个变量的函数积分

获取原文
获取原文并翻译 | 示例

摘要

We study aspects of the analytic foundations of integration and closely related problems for functions of infinitely many variables x_1, x_2.... ∈ D. The setting is based on a reproducing kernel k for functions on D, a family of non-negative weights γ_u, where u varies over all finite subsets of N, and a probability measure p on D. We consider the weighted superposition K =∑_uγ_uk_u of finite tensor products k_u of k. Under mild assumptions we show that If is a reproducing kernel on a properly chosen domain in the sequence space D~N, and that the reproducing kernel Hilbert space H(K) is the orthogonal sum of the spaces H(γ_uk_u). Integration on H(K) can be defined in two ways, via a canonical representer or with respect to the product measure p~N on D~N. We relate both approaches and provide sufficient conditions for the two approaches to coincide.
机译:我们研究无穷多个变量x_1,x_2 ....∈D的函数的积分分析基础以及与之密切相关的问题。该设置基于D上函数的重现核k,这是一个非负权重的族γ_u,其中u在N的所有有限子集上变化,并且概率度量p在D上。我们考虑k的有限张量积k_u的加权叠加K = ∑_uγ_uk_u。在温和的假设下,我们证明If是序列空间D〜N中正确选择的域上的一个再生核,而再生核希尔伯特空间H(K)是空间H(γ_uk_u)的正交和。 H(K)上的积分可以通过两种方式定义,一种是通过典范表示,另一种是关于D〜N上的乘积度量p〜N。我们将两种方法联系起来,并为两种方法的重合提供了充分的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号