首页> 外文期刊>Journal of circuits, systems and computers >Novel 4:2 Approximate Compressor Designs for Multimedia and Neural Network Applications
【24h】

Novel 4:2 Approximate Compressor Designs for Multimedia and Neural Network Applications

机译:新颖的4:2多媒体和神经网络应用的近似压缩机设计

获取原文
获取原文并翻译 | 示例

摘要

Low power dissipation in approximate arithmetic circuits has laid the foundation for area-efficient computational units for error resilient applications like image and signal processing. This paper proposes two novel low power high speed architectures for approximate 4:2 compressor that can be employed in multipliers for partial product summation. The two designs presented (Design-1 and Design-2) have Error Distance (ED) of +/- 1 and Error Rate (ER) of 25%. The proposed Design-1 and Design-2 are able to achieve reduction in power and delay by (62.50%, 47.67%) and (83.13%, 60.20%), respectively, in comparison with the exact 4:2 compressor. To verify the effectiveness of the design, the proposed architectures are used to implement 8x8 Dadda multiplier. The equal number of errors in positive and negative directions in the proposed designs aid in reducing the Mean Error Distance (MED) and Mean Relative Error Distance (MRED) of the multiplier. Multiplication of images and two-level decomposition of 2D Haar wavelets are implemented using the designed Dadda multiplier. The efficiency of the image processing applications is measured in terms of Mean Structural Similarity (MSSIM) index and Peak Signal-to-Noise Ratio (PSNR) and an average of 0.98 and 35dB, respectively, is obtained, which are in the acceptable range. In addition, a Convolutional Neural Network (CNN)-based LeNet-1 Handwritten Digit Recognition System (HDRS) is implemented using the proposed compressor-based multipliers. The proposed compressor-based architectures are able to achieve an average accuracy of 96.23%.
机译:近似算术电路中的低功耗耗尽已经为面积有效的计算单元奠定了误差弹性应用的基础,例如图像和信号处理。本文提出了两种新型低功率高速架构,用于近似4:2压缩机,其可用于乘法器以进行部分产品求和。呈现(设计-1和Design-2)的两种设计具有+/- 1的误差距离(ED)和25%的错误率(ER)。与精确的4:2压缩机相比,所提出的设计-1和Design-2分别通过(62.50%,47.67%)和(83.13%,60.20%)降低(62.50%,47.67%)和(83.13%,60.20%)。为了验证设计的有效性,所提出的架构用于实现8x8 Dadda乘法器。所提出的设计中的正面和负方向上的相同数量的误差有助于减少乘法器的平均误差距离(MED)和平均相对误差距离(MERED)。使用设计的DADDA乘法器实现图像和两级分解的乘法和两级分解。根据平均结构相似性(MSSIM)指数和峰值信噪比(PSNR)分别测量图像处理应用的效率分别获得,并且平均分别为0.98和35dB,这在可接受的范围内。另外,使用所提出的基于压缩机的乘法器实现卷积神经网络(CNN)基于LENET-1手写的数字识别系统(HDR)。所提出的基于压缩机的架构能够达到96.23%的平均精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号