首页> 外文期刊>Journal of building performance simulation >Identification of multi-zone grey-box building models for use in model predictive control
【24h】

Identification of multi-zone grey-box building models for use in model predictive control

机译:识别模型预测控制中使用的多区灰度箱建筑模型

获取原文
获取原文并翻译 | 示例

摘要

Predictive controllers can greatly improve the performance of energy systems in buildings. An important challenge of these controllers is the need of a building model accurate and simple enough for optimization. Grey-box modelling stands as a popular approach, but the identification of reliable grey-box models is hampered by the complexity of the parameter estimation process, specifically for multi-zone models. Hence, single-zone models are commonly used, limiting the performance and applicability of the predictive controller. This paper investigates the feasibility of the identification of multi-zone grey-box building models and the benefits of using these models in predictive control. For this purpose, the parameter estimation process is split by individual zones to obtain an educated initial guess. A virtual test case from the BOPTEST framework is contemplated to assess the simulation and control performance. The results show the relevance of modelling thermal interactions between zones in the multi-zone building.
机译:预测控制器可以大大提高建筑物中能量系统的性能。这些控制器的一个重要挑战是需要建筑模型准确和足够简单的优化。灰度盒建模代表成为一种流行的方法,但可靠的灰度盒型号的识别受到参数估计过程的复杂性的阻碍,专门用于多区域模型。因此,通常使用单区域模型,限制预测控制器的性能和适用性。本文调查了多区灰度箱构建模型的可行性以及在预测控制中使用这些模型的优势。为此目的,参数估计过程由各个区域分开以获得受过教育的初始猜测。预期来自Boptest框架的虚拟测试用例以评估模拟和控制性能。结果表明,多区建筑中区域之间的热相互作用建模的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号