首页> 外文期刊>Journal of building performance simulation >A methodology for generating reduced-order models for large-scale buildings using the Krylov subspace method
【24h】

A methodology for generating reduced-order models for large-scale buildings using the Krylov subspace method

机译:一种使用Krylov子空间方法为大型建筑物产生减少级模型的方法

获取原文
获取原文并翻译 | 示例

摘要

Developing a computationally efficient but accurate building energy simulation (BES) model is important for many purposes. Model order reduction (MOR) methods are attractive and much more reliable than identification approaches, since it directly extract a lower-dimensional model from a detailed physics-based model without any pre-simulations. However, because of computational and data storage requirements, there are challenges of applying these methods to a large-scale building. To overcome the problem, this paper introduces the Krylov subspace method to the building science field. Technical issues of applying the method to building applications are addressed and a suitable algorithm that overcomes those challenges is presented. To demonstrate the reliability of the algorithm, comparisons between the resulted reduced-order model (ROM) and a high-fidelity model from a commercial BES software for a 60-zone case study building are provided. The ROM was a factor of 100 faster than the high fidelity model but with high accuracy.
机译:开发计算有效但准确的建筑能量模拟(BES)模型对于许多目的很重要。模型顺序减少(MOR)方法具有吸引力,并且比识别方法更可靠,因为它直接从基于物理的模型中直接提取了没有任何预仿真的详细的基于物理的模型。然而,由于计算和数据存储要求,将这些方法应用于大规模建筑物存在挑战。为了克服这个问题,本文介绍了建筑科学领域的Krylov子空间方法。解决了构建应用程序的方法的技术问题并呈现了克服这些挑战的合适算法。为了证明算法的可靠性,提供了所产生的阶阶模型(ROM)与来自商业BES软件的用于60区案例研究建筑物的比较。 ROM比高保真模型快100倍,但高精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号