首页> 外文期刊>Journal of building performance simulation >A data-centric bottom-up model for generation of stochastic internal load profiles based on space-use type
【24h】

A data-centric bottom-up model for generation of stochastic internal load profiles based on space-use type

机译:基于空间使用类型的用于生成随机内部负载配置文件的数据为中心的自下而上模型

获取原文
获取原文并翻译 | 示例

摘要

There is currently no established methodology for the generation of synthetic stochastic internal load profiles for input into building energy simulation. In this paper, a Functional Data Analysis approach is used to propose a new data-centric bottom-up model of plug loads based on hourly data monitored at a high spatial resolution and by space-use type for a case-study building. The model comprises a set of fundamental Principal Components (PCs) that describe the structure of all data samples in terms of amplitude and phase. Scores (or weightings) for each daily demand profile express the contribution of each PC to the demand. Together the principal components and the scores constitute a structure-based model potentially applicable beyond the building considered. The results show good agreement between samples generated using the model and monitored data for key parameters of interest including the timing of the daily peak demand.
机译:目前没有建立的方法来产生用于输入建筑能量模拟的合成随机内部负载型材。在本文中,使用功能数据分析方法来提出基于以高空间分辨率监测的每小时数据和用于案例研究建筑的空间使用类型的每小时数据为一个新的数据中心自下而上模型。该模型包括一组基本的主要组成部分(PC),其在幅度和相位上描述了所有数据样本的结构。每个日常需求配置文件的分数(或加权)表达了每个PC对需求的贡献。主要组成部分和分数在一起构成了基于结构的模型,可能适用于考虑的建筑物之外。结果显示使用模型生成的样本与监控数据的数据之间的良好一致性,包括每日峰值需求的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号