首页> 外文期刊>Journal of building performance simulation >A methodology for auto-calibrating urban building energy models using surrogate modeling techniques
【24h】

A methodology for auto-calibrating urban building energy models using surrogate modeling techniques

机译:使用替代建模技术自动校准城市建筑能耗模型的方法

获取原文
获取原文并翻译 | 示例

摘要

Owners of large building portfolios such as university campuses have long relied on building energy models to predict potential energy savings from various efficiency upgrades. Traditional calibration procedures for individual building model are time intensive and require specially trained personnel, making their applications to campuses with hundreds of buildings prohibitive. Recently proposed automatic calibration techniques reduce the manual effort during calibration but require hundreds of thousands of energy simulations which increase their cost. To reduce the computational effort of these methods, this paper proposes a methodology that uses a data-driven approximation technique. Instead of brute-force simulations using detailed engineering models, this study employs statistical surrogate models with an optimization algorithm to estimate properties of unknown building parameters. Results demonstrate that when envelope information is available, this workflow yields sufficiently accurate estimates of hard to observe building characteristics, about 500 times faster than traditional approaches.
机译:诸如大学校园之类的大型建筑投资组合的所有者长期以来一直依靠建筑节能模型来预测各种效率提升带来的潜在节能效果。针对单个建筑物模型的传统校准程序会耗费大量时间,并且需要经过专门培训的人员,从而使其无法应用于拥有数百座建筑物的校园。最近提出的自动校准技术减少了校准期间的人工工作,但是需要成千上万的能量模拟,这增加了它们的成本。为了减少这些方法的计算量,本文提出了一种使用数据驱动的近似技术的方法。代替使用详细的工程模型进行暴力模拟,本研究采用具有优化算法的统计替代模型来估计未知建筑参数的属性。结果表明,在可以获得围护结构信息的情况下,此工作流程可对难以观察到的建筑特征产生足够准确的估计,比传统方法快约500倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号