首页> 外文期刊>Journal of the Association for Information Systems >Using Visual Representations of Data to Enhance Sensemaking in Data Exploration Tasks
【24h】

Using Visual Representations of Data to Enhance Sensemaking in Data Exploration Tasks

机译:使用数据的可视表示法增强数据探索任务中的意义

获取原文
获取原文并翻译 | 示例

摘要

This paper explains how visual representations of data enable individual sensemaking in data exploration tasks. We build upon ntheories of human perception and cognition, including Cognitive Fit Theory, to explain what aspects of visual representations nfacilitate sensemaking for the viewer. We make three primary contributions. First, we give a general characterization of visual nrepresentations that would be used for data exploration tasks. These representations consist of a scene, objects within the scene, nand the characteristics of those objects. Second, we extend Cognitive Fit Theory into the data exploration task domain. We nexplain that the data exploration task has a number of spatial subtasks including observing data points, looking for patterns or noutliers, making inferences, comparing observed facts or patterns to one’s own knowledge, generating hypotheses about the data, nand drawing analogies from the context being observed to another context. Third, we offer a set of theoretical propositions about nhow visual representations of data can serve the sensemaking goal. Specifically, visual representations best facilitate sensemaking nin data exploration tasks when they (1) support the four basic human visual perceptual approaches of association, differentiation, nordered perception, and quantitative perception, (2) have strong Gestalt properties, (3) are consistent with the viewer’s stored nknowledge, and (4) support analogical reasoning. We propose that visual representations should possess several of these four naspects to make them well-suited for the task of data exploration.
机译:本文解释了数据的视觉表示如何在数据探索任务中实现个人感知。我们基于人类认知和认知的理论(包括认知契合理论)来解释视觉表示的哪些方面有助于观看者进行感官理解。我们做出三个主要贡献。首先,我们给出了可视化n表示的一般表征,该表征将用于数据探索任务。这些表示包括场景,场景中的对象以及这些对象的特征。其次,我们将认知契合理论扩展到数据探索任务领域。我们解释说,数据探索任务具有许多空间子任务,包括观察数据点,寻找模式或虚假信息,进行推论,将观察到的事实或模式与自己的知识进行比较,生成有关数据的假设,从上下文中提取类比。从另一个角度观察。第三,我们提供了一组有关数据视觉表示如何服务于感官目标的理论命题。具体来说,当视觉表示法(1)支持四种基本的人类视觉知觉方法,即联想,区分,柔和感知和定量感知时,(2)具有强大的格式塔特性,(3)与查看者存储的nknowledge,以及(4)支持类比推理。我们建议视觉表示应具有这四个方面中的几个,以使其非常适合数据探索的任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号