首页> 外文期刊>Journal of Applied Physics >Phase evolution during annealing of low-temperature co-evaporated precursors for CZTSe solar cell absorbers
【24h】

Phase evolution during annealing of low-temperature co-evaporated precursors for CZTSe solar cell absorbers

机译:用于CZTSE太阳能电池吸收剂的低温共蒸发前体退火过程中的相位展

获取原文
获取原文并翻译 | 示例

摘要

Systematic investigations into the phase evolution during reactive annealing of copper-zinc-tin-selenide (CZTSe) precursors for the fabrication of kesterite solar cell absorber layers have been paramount in understanding and suppressing the formation of secondary phases that deteriorate device performance. In this study, the phase evolution during annealing of low-temperature co-evaporated CZTSe precursors is investigated. A detailed analysis of films selenized at different temperatures is used to reveal the possible reaction pathway of CZTSe formation. Utilizing a combination of x-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectroscopy, it is shown that CZTSe formation starts by Cu out-diffusion to the surface and Cu-Se phase formation at a temperature of 350 °C. An intimate mixing of binaries and ternaries during low-temperature selenization is observed. On the contrary, only binaries are observed at high-temperature selenization. This suggests that the CZTSe formation pathway involves reaction schemes where (ⅰ) a competition between binary and ternary phases dominates at low-temperature and (ⅱ) binary reactions dominate the process at high temperatures. However, the number of binary phases decreases with increasing selenization temperature until they become undetectable by XRD and Raman spectroscopy at a temperature of 540°C (selenization time 10 min). Utilizing the presented selenization conditions, prototype solar cells with an efficiency of up to 7.5%, an open-circuit voltage of 407 mV, and a fill factor of 59%, could be demonstrated. The temperature-dependent current density-voltage characteristics indicate that the performance of the prototype devices is limited by bulk Schottky-Read-Hall recombination.
机译:系统的调查到相位演化为吸收层锌黄锡矿太阳能电池的制造中的铜 - 锌 - 锡 - 硒化物(CZTSe)的前体的反应性在退火过程中已经理解,抑制该恶化器件性能的二次相的形成至关重要。在这项研究中,低温共蒸发CZTSe前体的退火时的相位演化进行了研究。在不同温度下硒化膜的详细分析是用来揭示的CZTSe形成可能的反应途径。利用X射线衍射,拉曼光谱,扫描电子显微镜,透射电子显微镜和能量分散型X射线光谱的组合,它表明CZTSe形成开始用Cu外扩散到表面和Cu-Se系相的形成在350℃的温度下。低温硒化过程中的二进制文件和ternaries的紧密混合,观察到。相反,只有二进制文件在高温硒化观察。这表明CZTSe形成途径包括反应方案,其中(ⅰ)在低温和(ⅱ)的反应二进制二元和三元相占优势之间的竞争主导过程在高温下。然而,二进制相数随硒化温度降低,直到它们在540℃(硒化时间10分钟)的温度下成为通过XRD和拉曼光谱检测不到。利用所提出的硒化的条件下,原型太阳能电池具有高达7.5%,407毫伏的开路电压的效率,以及59%的填充因数,可以证明。依赖于温度的电流密度 - 电压特性表明该原型器件的性能是通过散装肖特基读霍尔重组限制。

著录项

  • 来源
    《Journal of Applied Physics》 |2021年第15期|153104.1-153104.8|共8页
  • 作者单位

    Institute of Microstructure Technology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Institute of Applied Physics KIT Wolfgang-Caede-Str. 1 76131 Karlsruhe Germany Material Science and Solar Energy group Department of Physics University of Dares Salaam (UDSM) P. O. Box 35063 Dar es Salaam Tanzania;

    Laboratory for Electron Microscopy KIT Engesserstr. 7 76131 Karlsruhe Germany;

    Laboratory for Electron Microscopy KIT Engesserstr. 7 76131 Karlsruhe Germany;

    Laboratory for Electron Microscopy KIT Engesserstr. 7 76131 Karlsruhe Germany;

    Laboratory for Electron Microscopy KIT Engesserstr. 7 76131 Karlsruhe Germany;

    Institute for Applied Materials KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany;

    Institute of Microstructure Technology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Light Technology Institute KIT Engesserstr. 13 76131 Karlsruhe Germany;

    Institute of Microstructure Technology Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany Light Technology Institute KIT Engesserstr. 13 76131 Karlsruhe Germany;

    Institute of Applied Physics KIT Wolfgang-Caede-Str. 1 76131 Karlsruhe Germany Light Technology Institute KIT Engesserstr. 13 76131 Karlsruhe Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号