首页> 外文期刊>Journal of Applied Physics >Lucky drift impact ionization in amorphous semiconductors
【24h】

Lucky drift impact ionization in amorphous semiconductors

机译:非晶半导体中的幸运漂移冲击电离

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The review of avalanche multiplication experiments clearly confirms the existence of the impact ionization effect in this class of semiconductors. The semilogarithmic plot of the impact ionization coefficient (alpha) versus the reciprocal field (1/F) for holes in a-Se and electrons in a-Se and a-Si:H places the avalanche multiplication phenomena in amorphous semiconductors at much higher fields than those typically reported for crystalline semiconductors with comparable bandgaps. Furthermore, in contrast to well established concepts for crystalline semiconductors, the impact ionization coefficient in a-Se increases with increasing temperature. The McKenzie and Burt [S. McKenzie and M. G. Burt, J. Phys. C 19, 1959 (1986)] version of Ridley's lucky drift (LD) model [B. K. Ridley, J. Phys. C 16, 3373 (1988)] has been applied to impact ionization coefficient versus field data for holes and electrons in a-Se and electrons in a-Si:H. We have extracted the electron impact ionization coefficient versus field (alpha(e) vs F) data for a-Si:H from the multiplication versus F and photocurrent versus F data recently reported by M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys.41, 2552 (2002). Provided that one accepts the basic assumption of the Ridley LD model that the momentum relaxation rate is faster than the energy relaxation rate, the model can satisfactorily account for impact ionization in amorphous semiconductors even with ionizing excitation across the bandgap, E-I=E-g. If lambda is the mean free path associated with momentum relaxing collisions and lambda(E) is the energy relaxation length associated with energy relaxing collisions, than the LD model requires lambda(E)>lambda. The application of the LD model with energy and field independent lambda(E) to a-Se leads to ionization threshold energies E-I that are quite small, less than E-g/2, and requires the possible but improbable ionization of localized states. By making lambda(E)=lambda(E)(E,F) energy and field dependent, we were able to obtain excellent fits to alpha vs 1/F data for both holes and electrons in a-Se for both E-I=E-g/2 and E-I=E-g. In the former case, one expects occupied localized states at E-F (=E-g/2) to be ionized and in the second case, one expects excitation across the bandgap. We propose that ionization excitation to localized tail states very close to the transport band can explain the thermally activated alpha since the release time for the observed activation energies is much shorter than the typical transit times at avalanche fields. For the a-Se case, E-I=E(g)approximate to2 eV leads to the following conclusions: (a) For holes, lambda(E) has negligibly little field dependence but increases with energy. At the ionization threshold energy lambda(E)similar to4 nm. (b) For electrons, lambda(E) increases with energy and the field with lambda(E)similar to2 nm at the ionization threshold and at impact ionization fields. For electron impact ionization in a-Si:H, the data can be readily interpreted in terms of near bandgap ionization E-I=E-g and a lambda(E) that decreases with increasing field, and having very little energy dependence. The energy relaxation length has opposite tendencies in a-Se and a-Si:H, which probably reflects the distinctly different types of behavior of hot carriers in the transport band in these two amorphous semiconductors.(C) 2004 American Institute of Physics.
机译:雪崩倍增实验的回顾清楚地证实了这类半导体中存在碰撞电离效应。碰撞电离系数(α)与a-Se中的空穴以及a-Se和a-Si:H中的电子的倒数场(1 / F)的半对数图将非晶半导体中的雪崩倍增现象置于更高的场上比通常报告的具有可比带隙的晶体半导体要高。此外,与成熟的晶体半导体概念相反,a-Se中的碰撞电离系数随温度升高而增加。麦肯齐和伯特[S. McKenzie和M.G. Burt,J.Phys。 C 19,1959(1986)]版的雷德利(Ridley)的幸运漂移(LD)模型[B. K.Ridley,J.Phys。文献[C 16,3373(1988)]已被用于影响电离系数与a-Se中的空穴和电子以及a-Si:H中的电子的场数据的关系。我们从M. Akiyama,M。Hanada,H。Takao,泽田K.和石田M. J.应用Phys.41,2552(2002)。假设人们接受了Ridley LD模型的基本假设,即动量弛豫速率快于能量弛豫速率,那么即使在整个带隙处发生电离激发,E-I = E-g,该模型也可以令人满意地说明非晶半导体中的碰撞电离。如果lambda是与动量弛豫碰撞相关的平均自由程,而lambda(E)是与能量弛豫碰撞相关的能量弛豫长度,则LD模型要求lambda(E)> lambda。将具有能量和场无关的λ(E)的LD模型应用于a-Se会导致电离阈值能量E-I很小,小于E-g / 2,并且需要可能但不可能发生的局域化电离。通过使lambda(E)= lambda(E)(E,F)依赖于能量和场,我们对于EI = Eg / 2,EI =例如。在前一种情况下,人们希望在E-F(= E-g / 2)处占据的局域化状态被电离,而在第二种情况下,人们希望在整个带隙处激发。我们建议电离激发到非常接近传输带的局部尾态可以解释热激活的α,因为观察到的激活能量的释放时间比雪崩场的典型传输时间短得多。对于a-Se情况,E-I = E(g)大约为2 eV,得出以下结论:(a)对于空穴,λ(E)的场依存性几乎可以忽略不计,但随能量而增加。在电离阈值处,能量λ(E)接近4 nm。 (b)对于电子,在电离阈值和碰撞电离场处,λ(E)随能量而增加,λ(E)的场近似于2 nm。对于a-Si:H中的电子碰撞电离,可以很容易地用近带隙电离E-I = E-g和随电场增加而减小的lambda(E)来解释数据,并且对能量的依赖性很小。能量弛豫长度在a-Se和a-Si:H中具有相反的趋势,这可能反映了这两种非晶态半导体在传输带中热载流子的行为截然不同。(C)2004年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号