首页> 外文期刊>Journal of Applied Physics >Charge transport and trapping in InN nanowires investigated by scanning probe microscopy
【24h】

Charge transport and trapping in InN nanowires investigated by scanning probe microscopy

机译:通过扫描探针显微镜研究InN纳米线中的电荷传输和俘获

获取原文
获取原文并翻译 | 示例
           

摘要

Charge transport and trapping in InN nanowires (NWs) and their networks have been investigated using scanning current voltage microscopy (SIVM) and scanning gate microscopy (SGM). SIVM maps indicate highly conducting NWs and nanojunctions as well as significant variation in surface barrier height along the NWs, which are strongly affected by deformations. SIVM measurements were used to determine the electrical conductivity and carrier mobility of individual NWs exploiting the unusually large probe current under reverse bias, arising out of possible type II heterostructure band alignment. Strong correlation between surface barrier change and electrical conductivity of the NW was observed, which can be explained by considering a high density of electron accumulation at the NW surface. SGM measurements performed on NW field effect transistors reveal large scale trapping of carriers under reverse bias, while cyclic drain current-probe voltage measurements indicate both trapping and detrapping rates to be strongly dependent on the magnitude of the reverse bias. Application of a negative probe bias pulse resulted in a drain current recovery transient with time constant of tens of seconds indicating large activation energy for the traps whose density is estimated to be in excess of 2 × 10~(13) cm~(-2).
机译:InN纳米线(NWs)及其网络中的电荷传输和俘获已使用扫描电流电压显微镜(SIVM)和扫描门显微镜(SGM)进行了研究。 SIVM贴图显示出高导电性的NW和纳米结,以及沿NW的表面势垒高度的明显变化,这些变化受变形的影响很大。 SIVM测量用于确定单个NW的电导率和载流子迁移率,这些NW利用可能由于II型异质结构能带对准而产生的反向偏置下异常大的探针电流。观察到表面势垒变化与NW的电导率之间有很强的相关性,这可以通过考虑NW表面的高电子积累密度来解释。在NW场效应晶体管上执行的SGM测量表明,在反向偏置下会发生大规模的载流子陷获,而循环漏极电流探针电压测量表明,陷获率和去陷获率都很大程度上取决于反向偏置的幅度。施加负探针偏置脉冲会导致漏极电流恢复瞬态,其时间常数为数十秒,这表明陷阱的激活能量很大,陷阱的密度估计超过2×10〜(13)cm〜(-2) 。

著录项

  • 来源
    《Journal of Applied Physics》 |2009年第12期|124907.1-124907.9|共9页
  • 作者单位

    Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA;

    rnDepartment of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA;

    rnDepartment of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号