...
首页> 外文期刊>Journal of Applied Physics >Effects of defects and local thickness modulation on spin-polarization in photocathodes based on GaAs/GaAsP strained superlattices
【24h】

Effects of defects and local thickness modulation on spin-polarization in photocathodes based on GaAs/GaAsP strained superlattices

机译:基于GaAs / GaAsP应变超晶格的缺陷和局部厚度调制对光阴极自旋极化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The spin-polarization of electrons from the GaAs/GaAsP superlattice on a GaAs substrate (~90%) is higher than that from the same superlattice on a GaP substrate (~60%). Transmission electron microscopy and atomic force microscopy observations revealed that stacking faults were the main defects in the superlattice on the GaAs substrate, while local thickness modulation of the superlattice layers was prominent in the superlattice on the GaP substrate. According to the density of stacking faults and the areal ratio of the thickness modulation, it was concluded that the thickness modulation in the superlattice was the main reason for the spin-polarization reduction in the photocathode on the GaP substrate. Growth of a thin GaAs layer on a GaP substrate prior to superlattice growth eliminated the thickness modulation and the spin-polarization was recovered to 90%.
机译:来自GaAs衬底上的GaAs / GaAsP超晶格的电子的自旋极化(〜90%)高于来自GaP衬底上的相同超晶格的电子的自旋极化(〜60%)。透射电子显微镜和原子力显微镜观察表明,堆叠缺陷是GaAs衬底上超晶格的主要缺陷,而GaP衬底上的超晶格中超晶格层的局部厚度调制是突出的。根据堆叠缺陷的密度和厚度调制的面积比,可以得出结论,超晶格中的厚度调制是GaP衬底上光电阴极自旋极化减少的主要原因。在超晶格生长之前,GaP衬底上的薄GaAs层的生长消除了厚度调制,自旋极化恢复到90%。

著录项

  • 来源
    《Journal of Applied Physics》 |2010年第9期|p.094509.1-094509.6|共6页
  • 作者单位

    Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    rnDepartment of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    rnHigh Voltage Electron Microscope Laboratory, Eco Topia Science Institute, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    rnHigh Voltage Electron Microscope Laboratory, Eco Topia Science Institute, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    rnDepartment of Electrical and Electronic Engineering, School of Engineering, Daido University, Takiharu-cho 10-3, Minami-ku, Nagoya 457-8530, Japan;

    rnDepartment of Electrical and Electronic Engineering, School of Engineering, Daido University, Takiharu-cho 10-3, Minami-ku, Nagoya 457-8530, Japan;

    rnDepartment of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    rnDepartment of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

    rnDepartment of Electrical and Electronic Engineering, School of Engineering, Daido University, Takiharu-cho 10-3, Minami-ku, Nagoya 457-8530, Japan;

    rnDepartment of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, fuero-cho, Chikusa-ku, Nagoya 464-8603, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号