首页> 外文期刊>Journal of Applied Physics >Nanosecond in situ transmission electron microscope studies of the reversible Ge_2Sb_2Te_5 crystalline<=>amorphous phase transformation
【24h】

Nanosecond in situ transmission electron microscope studies of the reversible Ge_2Sb_2Te_5 crystalline<=>amorphous phase transformation

机译:纳秒原位透射电子显微镜对可逆Ge_2Sb_2Te_5晶体非晶相变的研究

获取原文
获取原文并翻译 | 示例

摘要

Chalcogenide-based phase-change materials have wide use in optical recording media and are growing in importance for use in non-volatile electronic memory. For both applications, rapid switching between the amorphous and crystalline phases is necessary, and understanding the changes during rapidly driven phase transitions is of scientific and technological significance. Laser-induced crystallization and amorphization occur rapidly and changes in atomic structure, microstructure, and temperature are difficult to observe experimentally and determine computationally. We have used nanosecond-scale time-resolved diffraction with intense electron pulses to study Ge_2Sb_2Te_5 during laser crystallization. Using a unique and unconventional specimen geometry, cycling between the amorphous and crystalline phases was achieved, enabling in situ transmission electron microscope (TEM) study of both microstructural and crystallographic changes caused by repeated switching. Finite element analysis was used to simulate interactions of the laser with the nano-structured specimens and to model the rapidly changing specimen temperature. Such time-resolved experimental methods combined with simulation of experimentally inaccessible physical characteristics will be fundamental to advancing the understanding of rapidly driven phase transformations.
机译:基于硫属化物的相变材料在光学记录介质中得到了广泛的应用,并且在非易失性电子存储器中的重要性日益提高。对于这两种应用,都需要在非晶相和结晶相之间进行快速切换,并且了解快速驱动的相变过程中的变化具有科学和技术意义。激光诱导的结晶和非晶化迅速发生,原子结构,微观结构和温度的变化很难通过实验观察和计算确定。我们已经使用纳秒级时间分辨衍射和强电子脉冲来研究激光结晶过程中的Ge_2Sb_2Te_5。使用独特且非常规的样品几何形状,实现了非晶相和结晶相之间的循环,从而使得原位透射电子显微镜(TEM)能够研究重复切换引起的微观结构和晶体学变化。有限元分析用于模拟激光与纳米结构样品的相互作用,并模拟快速变化的样品温度。这种时间分辨的实验方法与对实验上无法达到的物理特性进行仿真相结合,将是增进对快速驱动的相变的理解的基础。

著录项

  • 来源
    《Journal of Applied Physics》 |2012年第2期|p.024309.1-024309.6|共6页
  • 作者单位

    Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore,California 94551, USA;

    Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore,California 94551, USA;

    IBM Research Division, Almaden Research Center, San Jose, California 95120, USA;

    HBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA;

    Intel Corporation, Hillsboro, Oregon 97124, USA;

    Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;

    Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore,California 94551, USA;

    Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore,California 94551, USA;

    Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore,California 94551, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号