首页> 外文期刊>Journal of Applied Physics >Control of tensile strain and interdiffusion in Ge/Si(001) epilayers grown by molecular-beam epitaxy
【24h】

Control of tensile strain and interdiffusion in Ge/Si(001) epilayers grown by molecular-beam epitaxy

机译:通过分子束外延生长控制Ge / Si(001)外延层中的拉伸应变和相互扩散

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Tensile-strained and n-doped Ge has emerged as a potential candidate for the realization of optoelectronic devices that are compatible with the mainstream silicon technology. Tensile-strained Ge/Si epilayers can be obtained by using the difference of thermal expansion coefficients between Ge and Si. We have combined various surface, structural, and compositional characterizations to investigate the growth mode and the strain state in Ge/Si epilayers grown by molecular-beam epitaxy. The Ge growth was carried out using a two-step approach: a low-temperature growth to produce relaxed and smooth buffer layers, which is followed by a high-temperature growth to get high quality Ge layers. The existence of a substrate temperature window from 260 to 300℃ is evidenced, which allows to completely suppress the Ge/Si Stranski-Krastanov growth. As a consequence of the high temperature growth, a tensile strain lying in the range of 0.22%-0.24% is obtained. Concerning the effect of thermal annealing, it is shown that cyclic annealing may allow increasing the tensile strain up to 0.30%. Finally, we propose an approach to use carbon adsorption to suppress Si/Ge interdiffusion, which represents one of the main obstacles to overcome in order.to realize pure Ge-based optoelectronic devices.
机译:拉伸应变和n掺杂的Ge已经成为实现与主流硅技术兼容的光电器件的潜在候选者。通过利用Ge和Si之间的热膨胀系数的差异,可以得到拉伸应变的Ge / Si外延层。我们结合了各种表面,结构和组成特征,以研究通过分子束外延生长的Ge / Si外延层的生长模式和应变状态。 Ge生长采用两步法进行:低温生长以产生松弛且光滑的缓冲层,然后进行高温生长以得到高质量的Ge层。衬底温度窗口在260至300℃之间存在,这证明可以完全抑制Ge / Si Stranski-Krastanov的生长。由于高温生长,获得的拉伸应变在0.22%-0.24%的范围内。关于热退火的效果,表明循环退火可以使拉伸应变增加到0.30%。最后,我们提出了一种利用碳吸附来抑制Si / Ge互扩散的方法,这是实现纯Ge基光电器件要克服的主要障碍之一。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第8期|083504.1-083504.11|共11页
  • 作者单位

    Aix-Marseille Universite, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09, France;

    Aix-Marseille Universite, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09, France;

    Aix-Marseille Universite, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09, France;

    Universite de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Nancy-Universite, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France;

    Aix-Marseille Universite, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09, France;

    Aix-Marseille Universite, CNRS CINaM-UMR 7325, F-13288 Marseille Cedex 09, France;

    Institut d'Electronique Fondamentale, CNRS UMR 8622, Universite Paris-Sud, Bat. 220, 91405 Orsay, France;

    Institut d'Electronique Fondamentale, CNRS UMR 8622, Universite Paris-Sud, Bat. 220, 91405 Orsay, France;

    Institut d'Electronique Fondamentale, CNRS UMR 8622, Universite Paris-Sud, Bat. 220, 91405 Orsay, France;

    Universite de Lorraine, Institut Jean Lamour, CNRS UMR 7198, Nancy-Universite, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France;

    Research Institute of Electrical Communications, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号