首页> 外文期刊>Journal of Applied Physics >Studies of photoconductivity and field effect transistor behavior in examining drift mobility, surface depletion, and transient effects in Si-doped GaN nanowires in vacuum and air
【24h】

Studies of photoconductivity and field effect transistor behavior in examining drift mobility, surface depletion, and transient effects in Si-doped GaN nanowires in vacuum and air

机译:研究光电导率和场效应晶体管行为,以研究在真空和空气中掺杂硅的GaN纳米线中的漂移迁移率,表面损耗和瞬态效应

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Variable intensity photoconductivity (PC) performed under vacuum at 325 nm was used to estimate drift mobility (μ) and density (σ_s) of negative surface charge for c-axis oriented Si-doped GaN nanowires (NWs). In this approach, we assumed that σ_s was responsible for the equilibrium surface band bending (Ø) and surface depletion in the absence of illumination. The NWs were grown by molecular beam epitaxy to a length of approximately 10 μm and exhibited negligible taper. The free carrier concentration (N) was separately measured using Raman scattering which yielded N=(2.5 ± 0.3) ×10~(17)cm~(-3) for the growth batch studied under 325 nm excitation. Saturation of the PC was interpreted as a flatband condition whereby Ø was eliminated via the injection of photogenerated holes. Measurements of dark and saturated photocurrents, N, NW dimensions, and dimensional uncertainties, were used as input to a temperature-dependent cylindrical Poisson equation based model, yielding σ_s in the range of (3.5 to 7.5) × 10~(11) cm~(-2) and μ in the range of (850 to 2100) cm~2/(V s) across the (75 to 194) nm span of individual NW diameters examined. Data illustrating the spectral dependence and polarization dependence of the PC are also presented. Back-gating these devices, and devices from other growth batches, as field effect transistors (FETs) was found to not be a reliable means to estimate transport parameters (e.g., μ and σ_s) due to long-term current drift. The current drift was ascribed to screening of the FET back gate by injected positive charge. We describe how these gate charging effects can be exploited as a means to hasten the otherwise long recovery time of NW devices used as photoconductive detectors. Additionally, we present data illustrating comparative drift effects under vacuum, room air, and dry air for both back-gated NW FETs and top-gated NW MESFETs.
机译:在325 nm的真空下进行的可变强度光电导(PC)用于估计c轴取向Si掺杂GaN纳米线(NWs)的负迁移率(μ)和负表面电荷的密度(σ_s)。在这种方法中,我们假设σ_s是在没有照明的情况下平衡表面带弯曲(Ø)和表面损耗的原因。通过分子束外延将NW生长至大约10μm的长度,并显示可忽略的锥度。使用拉曼散射分别测量自由载流子浓度(N),对于在325 nm激发下研究的生长批次,其得出N =(2.5±0.3)×10〜(17)cm〜(-3)。 PC的饱和被认为是平坦带条件,其中通过注入光生空穴来消除Ø。暗和饱和光电流,N,NW尺寸和尺寸不确定性的测量值用作基于温度的圆柱泊松方程模型的输入,产生的σ_s在(3.5到7.5)×10〜(11)cm〜范围内(-2)和μ在所检查的各个NW直径的(75至194)nm跨度范围内在(850至2100)cm〜2 /(V s)范围内。还提供了说明PC的光谱依赖性和偏振依赖性的数据。由于场效应晶体管(FET)的长期电流漂移,发现对这些器件以及其他增长批次的器件进行反向门禁不是一种可靠的方法来估计传输参数(例如μ和σ_s)。电流漂移归因于注入正电荷对FET背栅的屏蔽。我们描述了如何利用这些栅极电荷效应作为一种手段来加快否则用作光电导检测器的NW设备的恢复时间。此外,我们提供的数据说明了背栅极NW FET和顶栅极NW MESFET在真空,室内空气和干燥空气下的相对漂移效应。

著录项

  • 来源
    《Journal of Applied Physics》 |2013年第1期|174306.1-174306.16|共16页
  • 作者单位

    NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305, USA;

    NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305, USA;

    NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305, USA;

    School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    Department of Physics, Arizona State University, Tempe, Arizona 85287, USA;

    NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305, USA;

    NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305, USA;

    NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号