...
首页> 外文期刊>Journal of Applied Physics >Modeling and simulation of carbon nanotube-semiconductor heterojunction vertical field effect transistors
【24h】

Modeling and simulation of carbon nanotube-semiconductor heterojunction vertical field effect transistors

机译:碳纳米管-半导体异质结垂直场效应晶体管的建模与仿真

获取原文
获取原文并翻译 | 示例

摘要

The scaling behavior of carbon nanotube (CNT)-organic semiconductor heterojunction enabled vertical field effect transistors are comprehensively examined by two-dimensional consistent device simulations. Tunneling current is modeled by introducing tunneling induced carrier generation into the current continuity equation. Modulation of both the CNT-semiconductor Shottky barrier height and thickness are examined. The tunneling current and thermionic current dominate at on-state and off-state, respectively. Barrier height modulation plays an important role and improves the on-off current ratio and sub-threshold swing considerably. Small diameter CNT is preferred for enhancing the gate control on the CNT-channel barrier height. Reducing the effective gate oxide thickness by either a thin oxide or a high-K gate insulator gives improvement of device performance, but the former one works more efficiently. The channel length and CNT spacing should be carefully engineered due to the trade-off between device characteristics in the sub-threshold and above-threshold region.
机译:碳纳米管(CNT)-有机半导体异质结使能的垂直场效应晶体管的缩放行为通过二维一致的器件仿真进行了全面检查。通过将隧穿感应的载流子生成引入电流连续性方程,可以对隧穿电流进行建模。研究了CNT半导体肖特基势垒高度和厚度的调制。隧穿电流和热电子电流分别在导通状态和截止状态下占主导地位。势垒高度调制起着重要的作用,并大大改善了开关电流比和亚阈值摆幅。优选小直径CNT,以增强对CNT通道势垒高度的栅极控制。通过薄氧化物或高K栅极绝缘体来降低有效栅极氧化物的厚度可改善器件性能,但前者的工作效率更高。由于在亚阈值区域和阈值以上区域中的器件特性之间需要进行权衡,因此应仔细设计通道长度和CNT间距。

著录项

  • 来源
    《Journal of Applied Physics 》 |2013年第23期| 234501.1-234501.8| 共8页
  • 作者单位

    Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA;

    Department of Physics, University of Florida, Gainesville, Florida 32611, USA;

    Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号